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Question 1

1 Multivariate t Distribution

In the first question, we look at the simulation and estimation of a Multivariate
t Distribution (MVT). In section 1.1, we provide an implementation of the Mul-
tivariate Myriad Filter (MMF), which is similar to the expectation-maximization
algorithm (EM), to estimate the parameters of a MVT distribution. In section
1.2, we provide an implementation of the brut-force maximum likelihood estimation
(MLE) for the same parameters. In section 1.3, we simulate MVT random variates
and find a general construction for the correlation matrix Σ. In the same script, we
iterate over different sample sizes and repetitions for all four estimation techniques:
MMF1, MLE, ECEM2 and the fast approximation3 (denoted ’Fast’ from here on
forth). Finally, we plot the results in boxplots. This corresponds to question 1.b)-d)
in the assignment. In the last section 1.4, we show the boxplots and discuss the
results.

1.1 MMF Algorithm for Parameter Estimation

In this section, we look at the implementation of MMF algorithm by Hasannasab
et al. (2021). They determine three algorithms as alternatives to the classical EM
algorithm, namely the accelatered EM-like algorithm (aEM), Multivariate Myrias
Filter (MMF) algorithm and Generalized MMF (GMMF). The MMF algorithm is
similar to the aEM algorithm except for the (what we will call it from here on forth)
df function:

vr+1= zero of

ϕ(
v

2
)− ϕ(

v + d

2
) +

n∑
i=1

wi(
vr + d

vr + δi,r+1

)− log(
vr + d

vr + δi,r+1

)− 1), (1)

where v stands for the degrees of freedom (we denote v by df), d for the number
of dimensions and δ is a weight computed in the expectation step. They allow for
arbitrary weights wi, given they sum up to 1.
In the following code, we look at the implementation of the MMF algorithm provided
in pseudocode. The only tricky part in the implementation of the pseudocode has
been the df function. Firstly, we need to pay attention w.r.t. which variable we find
the zeros in the update step for the df. We should find the zeros w.r.t. v and not
vr, as the authors describe in their lemma 3! We also include the function ’phi ’ to
compute the difference between the digamma function and the log. For this, we need
to specify that the input x, which is the one for which we find the zeros, is positive,
resp. put it in absolute value. The last step is technically irrelevant because of the
following insights that were gained when analyzing the df function more closely:

1Hasannasab, M., Hertrich, J., Laus, F. et al. Alternatives to the EM algorithm for ML
estimation of location, scatter matrix, and degree of freedom of the Student t distribution. Numer
Algor 87. 77–118 (2021). https://doi.org/10.1007/s11075-020-00959-w.

2Liu, C., Rubin, D.B. ML estimation of the t distribution using EM and its extensions, ECM
and ECME. Statistica Sinica. Vol.5. 19-39 (1995).

3Aeschliman, C., Park, J., and Cak, C.K., A Novel Parameter Estimation Algorithm for the
Multivariate t-Distribution and its Application to Computer Vision. Purdue University (2010).
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• Firstly, the authors define the df function only for x > 0. So this should be used
as a first and very simple constraint in the finding of zeros. This eliminates
the need for the absolute value in the digamma function of ’phi ’.

• Secondly, the df function behaves asymptotically around 0, which can either be
seen from a plot of the function (see Appendix: 3.1), or from equations (8) and
(9) in the original paper. This means we should exclude even positive values
close to zero, as functions designed to find zeros struggle with asymptotic
behaviour. Some test showed that using the interval [1, 20] as the initial
values already yielded excellent results with no error, when using the built-
in ’fzero’ function in Matlab. This simply avoids the asymptotic part of the
function, with little loss in information, as the true value for the df is surely
not below 1. The function, thus, finds zeros in the specified interval.

The general outline of the whole function was copied from the Fundamental
Statistical Inference book4, which accounts for the presence of outliers.

1 % =======================MMF Function===============================
2 % This calls the relevant MMF function and removes outliers. As ...

taken from the statistical inference book.
3 % ==================================================================
4

5 function [ solvec , crit, iter] = mvtMMF(y, d, tol, maxit)
6 if nargin < 4 , maxit=5e4 ; end , if nargin < 3, tol =1e−6; end
7 outlier = 0;
8 while 1
9 [solvec, crit, iter] = MMF(y, d, tol, maxit);

10 if all (¬isnan ( solvec ) ) , break
11 else
12 y=sort(y) ; left =y(2)−y(1) ; right =y(end)−y ( end−1) ;
13 if left > right , y=y ( 2: end ) ; else y=y ( 1: end−1) ...

; end
14 ' removing an outlier '; outlier = outlier +1;
15 end
16 end
17 end
18

19 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20 % This function computes the MMF of the MVT
21 function [solvec, crit, iter] = MMF(y, d, tol, maxit)
22 % initialise the parameters, with df = epsilon > 0
23 mu_old = zeros(d,d); df_old = zeros(d,1);
24 mu_old(1,:) = mean(y); sigma_r = cov(y); df_old(1) = 2;
25 iter = 0; crit = 0;
26 len_y = size(y); n = len_y(1);
27 df_fix = df_old(1);
28

29 old = [mu_old sigma_r df_old]; new = zeros(d, 2*d+1);
30

31 % Initialise random weight vec: simulate len(y) random numbers and
32 % normalise them via division by sum
33 randnmbr = rand(1, n);

4Paolella, M. S. Fundamental Statistical Inference: A Computational Approach. Vol.216. John
Wiley & Sons (2018).
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34 w = randnmbr./sum(randnmbr);
35

36

37 % Begin iteration for the EM
38 while 1
39 iter= iter +1;
40 % Define parameters for iteration
41 mu_r = old(1, 1:d) ; sigma_r = old(:, d+1:2*d); df_r = ...

old(1, 2*d+1);
42

43 % Append all ∆_ri and gam_ri values
44 ∆_r = zeros(1,n);
45 gam_r = zeros(1,n);
46

47 % Loop over all n samples
48 for i = 1:n
49

50 % E−step: compute the weigths
51 % ∆:
52 dif1 = y(i,:)−mu_r;
53 tim1 = mtimes(dif1, inv(sigma_r));
54 ∆_r(i) = mtimes(tim1, dif1');
55

56 % gamma (matrix of over Nxd)
57 gam_r(i) = (df_r + d)/(df_r + ∆_r(i));
58

59 end
60

61 % M−step:
62 % new mu:
63 mu_rplus1 = mtimes((w.*gam_r),y) ./ sum(w.*gam_r);
64 new(1, 1:3) = mu_rplus1;
65

66 % new sigma:
67 temp1 = (w.*gam_r).*y';
68 sigma_rplus1 = mtimes(temp1,y) ./ sum(w.*gam_r);
69 new(1:3, 4:6) = sigma_rplus1;
70

71 % Find 0's of the function for df
72 temp = (df_r+d)./(df_r+∆_r);
73 df_fun = @(x) phi(x/2) − phi((x+d)/2) + ...

sum(w.*(temp−log(temp)−1));
74

75 % Find the 0 of the function and append it to array
76 df_rplus1 = fzero(df_fun, [1 20]);
77 new(1, 2*d+1) = real(df_rplus1);
78

79 % Stopping criteria
80 crit = max ( abs ( old(1,end) − new(1,end) ) ) ; solvec=new ...

; if any ( isnan ( solvec ) ) , break , end
81 if ( crit < tol ) || ( iter ≥ maxit ) , break , end
82 old = new;
83

84 end
85 end
86

87

88 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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89 % Used to compute phi in the fzero−function
90 function phi = phi(y)
91 y = abs(y);
92 phi = psi(y) − log(y);
93 end

1.2 MLE for Parameter Estimation

This code is an adaptation from the code provided in the Time-Series book5. We sim-
ply extended the framework to accommodate 3-dimensional MVT random variates.
This, of course, entails the choice of suitable box constraints, which we accounted
for via the ’einschrk ’ function. The function to compute the pdf of MVT random
variates was provided in the book as well.

1 % =======================MLE Function===============================
2 % This function calculates the MLE as taken from the statistical ...

inference book.
3 % ==================================================================
4

5 function [param,stderr,iters,loglik,Varcov] = MVTestimation_3d(x)
6 [nobs, d]=size(x);
7

8 %%%%%%%% k mu1 mu2 mu3 s11 s12 s22 s13 s33 s23
9 bound.lo= [ 0.2 −1 −1 −1 0.01 −90 0.01 −90 0.01 −90];

10 bound.hi= [ 20 1 1 1 90 90 90 90 90 90];
11 bound.which=[ 1 0 0 0 1 1 1 1 1 1];
12 initvec =[1 −0.8 −0.2 −0.5 20 0 20 0 20 0];
13

14 maxiter=300; tol=1e−7; MaxFunEvals=length(initvec)*maxiter;
15 opts=optimset('Display', 'iter', 'Maxiter', maxiter, 'TolFun', ...

tol, 'TolX', tol,...
16 'MaxFunEvals',MaxFunEvals,'LargeScale','Off');
17 [pout,fval,¬,theoutput,¬,hess]= ...
18 fminunc(@(param) ...

MVTloglik(param,x,bound),einschrk(initvec,bound),opts);
19 V=inv(hess)/nobs; % Don't negate because we work with the ...

negative of the loglik
20 [param,V]=einschrk(pout,bound,V); % transform and apply ∆ method ...

to get V
21 param=param'; Varcov=V; stderr=sqrt(diag(V)); % Approximate ...

standard errors
22 loglik=−fval*nobs; iters=theoutput.iterations;
23

24

25 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
26 function ll=MVTloglik(param,x,bound)
27 if nargin<3, bound=0; end
28 if isstruct(bound), param=einschrk(real(param),bound,999); end
29 [nobs, d]=size(x); Sig=zeros(d,d); k=param(1); mu=param(2:d+1);
30 Sig(1,1)=param(d+2); Sig(2,2)=param(d+4); Sig(1,2)=param(d+3); ...

Sig(2,1)=Sig(1,2);

5Paolella, M. S. Linear models and time-series analysis: regression, ANOVA, ARMA and
GARCH. John Wiley & Sons (2018).
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31 Sig(3,3)=param(d+6); Sig(1,3)=param(d+5); Sig(3,1)=Sig(1,3); ...
Sig(2,3)=param(d+7);

32 Sig(3,2)=Sig(2,3);
33

34 if min(eig(Sig))<1e−10, ll=1e5;
35 else
36 pdf=zeros(nobs,1);
37 for i=1:nobs, pdf(i) = mvtpdfmine(x(i,:),k,mu,Sig); end
38 llvec=log(pdf); ll=−mean(llvec); if isinf(ll), ll=1e5; end
39 end
40

41 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
42 function y = mvtpdfmine(x,df,mu,Sigma)
43 % x is a d X 1 vector. Unlike Matlab's version, cannot pass a ...

matrix.
44 % Matlab's routine accepts a correlation (not dispersion) matrix.
45 % So, just need to do the usual scale transform. For example:
46 % x=[0.2 0.3]'; C = [1 .4; .4 1]; df = 2;
47 % scalevec=[1 2]'; xx=x./scalevec; mvtpdf(xx,C,df)/prod(scalevec)
48 % Same as:
49 % Sigma = diag(scalevec) * C * diag(scalevec); ...

mvtpdfmine(x,df,[],Sigma)
50 d=length(x);
51 if nargin<3, mu = []; end, if isempty(mu), mu = zeros(d,1); end
52 if nargin<4, Sigma = eye(d); end
53 x = reshape(x,d,1); mu = reshape(mu,d,1); term = (x−mu)' * ...

inv(Sigma) * (x−mu);
54 logN=−((df+d)/2)*log(1+term/df); ...

logD=0.5*log(det(Sigma))+(d/2)*log(df*pi);
55 y = exp(gammaln((df+d)/2) − gammaln(df/2) + logN − logD);
56

57

58 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
59 function [pout, Vout]= einschrk (pin, bound, Vin)
60 lo=bound.lo ; hi=bound.hi ; welche=bound.which;
61 if nargin < 3
62 trans=sqrt((hi−pin)./(pin−lo ) ) ; pout=(1−welche).*pin + ...

welche.*trans ;
63 Vout =[];
64 else
65 trans=(hi+lo.*pin.^2) ./ (1+ pin .^2) ; pout=(1−welche).* ...

pin + welche .* trans ;
66 % now adjust the standard e r r o r s
67 trans=2*pin .* (lo−hi ) ./ (1+pin .^2) .^2;
68 d=(1−welche) + welche .* trans ; % either unity or ∆ method .
69 J=diag (d) ; Vout = J* Vin * J ;
70 end
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1.3 Code for Output

The generation of random samples takes y ∼ N (0,I) and γ ∼ χ2(ν) to obtain:

x =

√
ν

γ
T ′y + c, (2)

where x ∼ MV T (c, T ′T, ν). The implementation in Matlab looks like this:

1 function [x] = MVTrandom(Sigma,df,T,mu)
2 [¬, d] = size(Sigma);
3 mu_normal = zeros(1,d);
4

5 Y = mvnrnd(mu_normal,Sigma,T); % The normal needs to be ...
location 0

6 U = chi2rnd(df);
7 x = mu + Y*sqrt(df./U);
8

9 end

Initially, we used the ’mvtrnd ’ function which is built-into Matlab. This led to very
weird parameter estimates of the diagonal values in Σ. With great effort, we figured
out that this implementation transforms any covariance matrix, given as input, into
a correlation matrix. So, only values of 1 on the diagonal are estimated correctly.
As this is not what we want, we use our own implementation.

We then estimate the parameters via the MMF, MLE, ECME and Fast for dif-
ferent sample sizes and plot the results in boxplots for visual comparison. In order
to simulate random variates, we construct a symmetric, positive definite (PD) co-
variance matrix. Instead of guessing values, we have generalized this procedure in
the following way: We start with a matrix of random values between -1 and 1, which
we transform into a symmetric matrix. Since the resulting matrix is only positive
semi-definite (PSD), we add perturbations along the diagonal to make it PD. Adding
these perturbations along the diagonal elevates the values above 1 and the matrix
thus becomes a covariance matrix.
The functions for the computation of the MMF and MLE were discussed in the two
previous sections. The functions for the ECME and Fast can be found under the
link in this footnote6.
Finally, we get to the boxplots of the estimated parameters. We estimate 10 param-
eters, one for the df, three for the location parameter µ and six for the correlation
matrix Σ (technically, there are nine parameters in Σ, but since it is symmetric, we
can leave away the equivalent values on the off-diagonals). Since we loop both over
the number of samples, T, and the repetitions, the output arrays for the estimates
become very large and have to be indexed correctly (which was a very tedious task),
so that the whole output can be displayed in one run of the script.

6https://github.com/robince/tdistfituser-content-fn-1-4d141606ec47b515bc78789792e0c34e
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1 % =======================Exercise 1=================================
2 % We simulate 200 and 2000 random variates of a multivariate t
3 % distribution and estimte the parameters via MMF and MLE.
4 % The outputs are plotted as boxplots.
5 % ==================================================================
6

7 % Initialise parameters
8 df = 4; d = 3; mu = zeros(1, d); %T = 200;
9

10 % Initialise all arrays to append all 10 parameters of the outputs
11 dfvecMMF = []; dfvecMLE = []; dfvecEC = []; dfvecFast = [];
12 muvecMMF_x = []; muvecMLE_x = []; muvecEC_x = []; muvecFast_x = [];
13 muvecMMF_y = []; muvecMLE_y = []; muvecEC_y = []; muvecFast_y = [];
14 muvecMMF_z = []; muvecMLE_z = []; muvecEC_z = []; muvecFast_z = [];
15 sigvecMMF_11 = []; sigvecMLE_11 = []; sigvecEC_11 = []; ...

sigvecFast_11 = [];
16 sigvecMMF_22 = []; sigvecMLE_22 = []; sigvecEC_12 = []; ...

sigvecFast_12 = [];
17 sigvecMMF_33 = []; sigvecMLE_33 = []; sigvecEC_22 = []; ...

sigvecFast_22 = [];
18 sigvecMMF_12 = []; sigvecMLE_12 = []; sigvecEC_13 = []; ...

sigvecFast_13 = [];
19 sigvecMMF_13 = []; sigvecMLE_13 = []; sigvecEC_33 = []; ...

sigvecFast_33 = [];
20 sigvecMMF_23 = []; sigvecMLE_23 = []; sigvecEC_23 = []; ...

sigvecFast_23 = [];
21

22 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
23

24 % Generate a random n x n matrix
25 sigma = −1 + 2.*rand(d,d);
26 % % construct a symmetric matrix
27 sigma = triu(sigma.',1) + tril(sigma);
28 % % Adding perturbations along the diagonal of a PSD matrix will ...

make it PD
29 sigma = sigma + d*eye(d)
30 % Check if sigma is PD
31 %{
32 symm = issymmetric(sigma)
33 d = eig(sigma)
34 isposdef = all(d>0)
35 %}
36

37 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
38

39 % For loop over sample sizes and repetitions for all methods.
40 for T = [200 2000]
41

42 for rep = 1:1 rep
43

44 % Simulate random variates from MVT with sample size T
45 y = MVTrandom(sigma, df, T, [0 0 0]);
46

47 % Estimate parameters with MMF
48 z = mvtMMF(y, d, 1e−3, 100);
49

50 % Estiamte parameters with MLE
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51 [param,stderr,iters,loglik,Varcov] = MVTestimation_3d(y);
52

53 % Estimate parameters with ECME
54 [mu_EC, Sig_EC, df_EC] = fitt_approx(y);
55

56 % Estimate parameters with the fast approximation ...
algorithm for the

57 % MLE.
58 [mu_Fast, Sig_Fast, df_Fast] = fitt(y);
59

60 %==========================================================
61 % Append outputs to arrays
62 % Append parameters to arrays for output (df)
63 dfvecMMF(end+1) = z(1,end); dfvecMLE(end+1) = param(1);
64 dfvecEC(end+1) = df_EC; dfvecFast(end+1) = df_Fast;
65

66 % Append parameters to arrays for output (mu)
67 muvecMMF_x(end+1) = z(1, 1); muvecMLE_x(end+1) = param(2);
68 muvecEC_x(end+1) = mu_EC(1,1); muvecFast_x(end+1) = ...

mu_Fast(1,1);
69

70 muvecMMF_y(end+1) = z(1, 2); muvecMLE_y(end+1) = param(3);
71 muvecEC_y(end+1) = mu_EC(1,2); muvecFast_y(end+1) = ...

mu_Fast(1,2);
72

73 muvecMMF_z(end+1) = z(1, 3); muvecMLE_z(end+1) = param(4);
74 muvecEC_z(end+1) = mu_EC(1,3); muvecFast_z(end+1) = ...

mu_Fast(1,3);
75

76 % Append parameters to arrays for output (Sigma)
77 sigvecMMF_11(end+1) = z(1,d+1); sigvecMLE_11(end+1) = ...

param(d+2);
78 sigvecEC_11(end+1) = Sig_EC(1,1); sigvecFast_11(end+1) = ...

Sig_Fast(1,1);
79

80 sigvecMMF_12(end+1) = z(1,d+2); sigvecMLE_12(end+1) = ...
param(d+3);

81 sigvecEC_12(end+1) = Sig_EC(1,2); sigvecFast_12(end+1) = ...
Sig_Fast(1,2);

82

83 sigvecMMF_22(end+1) = z(2,d+2); sigvecMLE_22(end+1) = ...
param(d+4);

84 sigvecEC_22(end+1) = Sig_EC(2,2); sigvecFast_22(end+1) = ...
Sig_Fast(2,2);

85

86 sigvecMMF_13(end+1) = z(1,d+3); sigvecMLE_13(end+1) = ...
param(d+5);

87 sigvecEC_13(end+1) = Sig_EC(1,3); sigvecFast_13(end+1) = ...
Sig_Fast(1,3);

88

89 sigvecMMF_33(end+1) = z(3,d+3); sigvecMLE_33(end+1) = ...
param(d+6);

90 sigvecEC_33(end+1) = Sig_EC(3,3); sigvecFast_33(end+1) = ...
Sig_Fast(3,3);

91

92 sigvecMMF_23(end+1) = z(2,d+3); sigvecMLE_23(end+1) = ...
param(d+7);

93 sigvecEC_23(end+1) = Sig_EC(2,3); sigvecFast_23(end+1) = ...
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Sig_Fast(2,3);
94 %==========================================================
95

96 end
97

98 end
99 %

100 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
101 % BOXPLOT FOR DF
102 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
103 % Assign the outputs to variables for the boxplot and subtract ...

true value
104 dfvecMMF1 = dfvecMMF(1:rep)'−df;
105 dfvecMMF2 = dfvecMMF(rep+1:end)'−df;
106 dfvecMLE1 = dfvecMLE(1:rep)'−df;
107 dfvecMLE2 = dfvecMLE(rep+1:end)'−df;
108 dfvecEC1 = dfvecEC(1:rep)'−df;
109 dfvecEC2 = dfvecEC(rep+1:end)'−df;
110 dfvecFast1 = dfvecFast(1:rep)'−df;
111 dfvecFast2 = dfvecFast(rep+1:end)'−df;
112

113

114 % Create boxplot
115 group1 = [ones(size(dfvecMMF1)); 2 * ones(size(dfvecMMF2)); 3 * ...

ones(size(dfvecMLE1)); 4 * ones(size(dfvecMLE2));
116 5 * ones(size(dfvecEC1)); 6 * ones(size(dfvecEC2)); 7 * ...

ones(size(dfvecFast1)); 8 * ones(size(dfvecFast2));];
117

118 figure(1)
119 boxplot([dfvecMMF1; dfvecMMF2; dfvecMLE1; dfvecMLE2; dfvecEC1; ...

dfvecEC2; dfvecFast1; dfvecFast2], group1);
120 set(gca,'XTickLabel',{'MMF: 200','MMF: 2000', 'MLE: 200','MLE: ...

2000', 'EC: 200','EC: 2000','Fast: 200','Fast: 2000'})
121

122

123

124

125 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
126 % BOXPLOT FOR mu
127 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
128 y_bar = mean(y);
129

130 % Assign the outputs to variables for the boxplot MMF. Do not ...
need to

131 % subtract the true value.
132 muvecMMF1_x = muvecMMF_x(1:rep)'−y_bar(1);
133 muvecMMF1_y = muvecMMF_y(1:rep)'−y_bar(2);
134 muvecMMF1_z = muvecMMF_z(1:rep)'−y_bar(3);
135 muvecMMF2_x = muvecMMF_x(rep+1:end)'−y_bar(1);
136 muvecMMF2_y = muvecMMF_y(rep+1:end)'−y_bar(2);
137 muvecMMF2_z = muvecMMF_z(rep+1:end)'−y_bar(3);
138

139 % Assign the outputs to variables for the boxplot MLE.
140 muvecMLE1_x = muvecMLE_x(1:rep)'−y_bar(1);
141 muvecMLE1_y = muvecMLE_y(1:rep)'−y_bar(2);
142 muvecMLE1_z = muvecMLE_z(1:rep)'−y_bar(3);
143 muvecMLE2_x = muvecMLE_x(rep+1:end)'−y_bar(1);
144 muvecMLE2_y = muvecMLE_y(rep+1:end)'−y_bar(2);
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145 muvecMLE2_z = muvecMLE_z(rep+1:end)'−y_bar(3);
146

147 % Assign the outputs to variables for the boxplot ECME.
148 muvecEC1_x = muvecEC_x(1:rep)'−y_bar(1);
149 muvecEC1_y = muvecEC_y(1:rep)'−y_bar(2);
150 muvecEC1_z = muvecEC_z(1:rep)'−y_bar(3);
151 muvecEC2_x = muvecEC_x(rep+1:end)'−y_bar(1);
152 muvecEC2_y = muvecEC_y(rep+1:end)'−y_bar(2);
153 muvecEC2_z = muvecEC_z(rep+1:end)'−y_bar(3);
154

155 % Assign the outputs to variables for the boxplot fast ...
approximation.

156 muvecFast1_x = muvecFast_x(1:rep)'−y_bar(1);
157 muvecFast1_y = muvecFast_y(1:rep)'−y_bar(2);
158 muvecFast1_z = muvecFast_z(1:rep)'−y_bar(3);
159 muvecFast2_x = muvecFast_x(rep+1:end)'−y_bar(1);
160 muvecFast2_y = muvecFast_y(rep+1:end)'−y_bar(2);
161 muvecFast2_z = muvecFast_z(rep+1:end)'−y_bar(3);
162

163

164 % Create the two boxplots as subplots
165 group2 = [ones(size(muvecMMF1_x)); 2 * ones(size(muvecMMF2_x)); ...

3 * ones(size(muvecMMF1_y));
166 4 * ones(size(muvecMMF2_y)); 5 * ones(size(muvecMMF1_z)); 6 ...

* ones(size(muvecMMF2_z));];
167 group3 = [ones(size(muvecMLE1_x)); 2 * ones(size(muvecMLE2_x)); ...

3 * ones(size(muvecMLE1_y));
168 4 * ones(size(muvecMLE2_y)); 5 * ones(size(muvecMLE1_z)); 6 ...

* ones(size(muvecMLE2_z));];
169 group4 = [ones(size(muvecEC1_x)); 2 * ones(size(muvecEC2_x)); 3 ...

* ones(size(muvecEC1_y));
170 4 * ones(size(muvecEC2_y)); 5 * ones(size(muvecEC1_z)); 6 * ...

ones(size(muvecEC2_z));];
171 group5 = [ones(size(muvecFast1_x)); 2 * ...

ones(size(muvecFast2_x)); 3 * ones(size(muvecFast1_y));
172 4 * ones(size(muvecFast2_y)); 5 * ones(size(muvecFast1_z)); ...

6 * ones(size(muvecFast2_z));];
173

174 figure(2)
175 boxplot([muvecMMF1_x; muvecMMF2_x; muvecMMF1_y; muvecMMF2_y; ...

muvecMMF1_z; muvecMMF2_z,], group2);
176 set(gca,'XTickLabel',{'MMF_x: 200','MMF_x: 2000', 'MMF_y: 200', ...

'MMF_y 2000','MMF_z: 200', 'MMF_z: 2000'})
177

178 figure(3)
179 boxplot([muvecMLE1_x; muvecMLE2_x; muvecMLE1_y; muvecMLE2_y; ...

muvecMLE1_z; muvecMLE2_z], group3);
180 set(gca,'XTickLabel',{'MLE_x: 200','MLE_x: 2000', 'MLE_y: 200', ...

'MLE_y 2000','MLE_z: 200', 'MLE_z: 2000'})
181

182 figure(4)
183 boxplot([muvecEC1_x; muvecEC2_x; muvecEC1_y; muvecEC2_y; ...

muvecEC1_z; muvecEC2_z,], group4);
184 set(gca,'XTickLabel',{'EC_x: 200','EC_x: 2000', 'EC_y: 200', ...

'EC_y 2000','EC_z: 200', 'EC_z: 2000'})
185

186 figure(5)
187 boxplot([muvecFast1_x; muvecFast2_x; muvecFast1_y; muvecFast2_y; ...
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muvecFast1_z; muvecFast2_z], group5);
188 set(gca,'XTickLabel',{'Fast_x: 200','Fast_x: 2000', 'Fast_y: ...

200', 'Fast_y 2000','Fast_z: 200', 'Fast_z: 2000'})
189

190

191 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
192 % BOXPLOT FOR sigma
193 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
194 % Assign the outputs to variables for the boxplot MMF. Do not ...

need to
195 % subtract the true value.
196 sigvecMMF1_11 = sigvecMMF_11(1:rep)'−sigma(1,1);
197 sigvecMMF1_12 = sigvecMMF_12(1:rep)'−sigma(1,2);
198 sigvecMMF1_22 = sigvecMMF_22(1:rep)'−sigma(2,2);
199 sigvecMMF1_13 = sigvecMMF_13(1:rep)'−sigma(1,3);
200 sigvecMMF1_33 = sigvecMMF_33(1:rep)'−sigma(3,3);
201 sigvecMMF1_23 = sigvecMMF_23(1:rep)'−sigma(2,3);
202 sigvecMMF2_11 = sigvecMMF_11(rep+1:end)'−sigma(1,1);
203 sigvecMMF2_12 = sigvecMMF_12(rep+1:end)'−sigma(1,2);
204 sigvecMMF2_22 = sigvecMMF_22(rep+1:end)'−sigma(2,2);
205 sigvecMMF2_13 = sigvecMMF_13(rep+1:end)'−sigma(1,3);
206 sigvecMMF2_33 = sigvecMMF_33(rep+1:end)'−sigma(3,3);
207 sigvecMMF2_23 = sigvecMMF_23(rep+1:end)'−sigma(2,3);
208

209

210 % Assign the outputs to variables for the boxplot MLE.
211 sigvecMLE1_11 = sigvecMLE_11(1:rep)'−sigma(1,1);
212 sigvecMLE1_12 = sigvecMLE_12(1:rep)'−sigma(1,2);
213 sigvecMLE1_22 = sigvecMLE_22(1:rep)'−sigma(2,2);
214 sigvecMLE1_13 = sigvecMLE_13(1:rep)'−sigma(1,3);
215 sigvecMLE1_33 = sigvecMLE_33(1:rep)'−sigma(3,3);
216 sigvecMLE1_23 = sigvecMLE_23(1:rep)'−sigma(2,3);
217 sigvecMLE2_11 = sigvecMLE_11(rep+1:end)'−sigma(1,1);
218 sigvecMLE2_12 = sigvecMLE_12(rep+1:end)'−sigma(1,2);
219 sigvecMLE2_22 = sigvecMLE_22(rep+1:end)'−sigma(2,2);
220 sigvecMLE2_13 = sigvecMLE_13(rep+1:end)'−sigma(1,3);
221 sigvecMLE2_33 = sigvecMLE_33(rep+1:end)'−sigma(3,3);
222 sigvecMLE2_23 = sigvecMLE_23(rep+1:end)'−sigma(2,3);
223

224 % Assign the outputs to variables for the boxplot ECME.
225 sigvecEC1_11 = sigvecEC_11(1:rep)'−sigma(1,1);
226 sigvecEC1_12 = sigvecEC_12(1:rep)'−sigma(1,2);
227 sigvecEC1_22 = sigvecEC_22(1:rep)'−sigma(2,2);
228 sigvecEC1_13 = sigvecEC_13(1:rep)'−sigma(1,3);
229 sigvecEC1_33 = sigvecEC_33(1:rep)'−sigma(3,3);
230 sigvecEC1_23 = sigvecEC_23(1:rep)'−sigma(2,3);
231 sigvecEC2_11 = sigvecEC_11(rep+1:end)'−sigma(1,1);
232 sigvecEC2_12 = sigvecEC_12(rep+1:end)'−sigma(1,2);
233 sigvecEC2_22 = sigvecEC_22(rep+1:end)'−sigma(2,2);
234 sigvecEC2_13 = sigvecEC_13(rep+1:end)'−sigma(1,3);
235 sigvecEC2_33 = sigvecEC_33(rep+1:end)'−sigma(3,3);
236 sigvecEC2_23 = sigvecEC_23(rep+1:end)'−sigma(2,3);
237

238 % Assign the outputs to variables for the boxplot fast ...
approximation.

239 sigvecFast1_11 = sigvecFast_11(1:rep)'−sigma(1,1);
240 sigvecFast1_12 = sigvecFast_12(1:rep)'−sigma(1,2);
241 sigvecFast1_22 = sigvecFast_22(1:rep)'−sigma(2,2);
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242 sigvecFast1_13 = sigvecFast_13(1:rep)'−sigma(1,3);
243 sigvecFast1_33 = sigvecFast_33(1:rep)'−sigma(3,3);
244 sigvecFast1_23 = sigvecFast_23(1:rep)'−sigma(2,3);
245 sigvecFast2_11 = sigvecFast_11(rep+1:end)'−sigma(1,1);
246 sigvecFast2_12 = sigvecFast_12(rep+1:end)'−sigma(1,2);
247 sigvecFast2_22 = sigvecFast_22(rep+1:end)'−sigma(2,2);
248 sigvecFast2_13 = sigvecFast_13(rep+1:end)'−sigma(1,3);
249 sigvecFast2_33 = sigvecFast_33(rep+1:end)'−sigma(3,3);
250 sigvecFast2_23 = sigvecFast_23(rep+1:end)'−sigma(2,3);
251

252

253 % Create the two boxplots as subplots
254 group6 = [ones(size(sigvecMMF1_11)); 2 * ...

ones(size(sigvecMMF2_11)); 3 * ones(size(sigvecMMF1_12));
255 4 * ones(size(sigvecMMF2_12)); 5 * ...

ones(size(sigvecMMF1_22)); 6 * ones(size(sigvecMMF2_22));
256 7 * ones(size(sigvecMMF1_13)); 8 * ...

ones(size(sigvecMMF2_13)); 9 * ones(size(sigvecMMF1_33));
257 10 * ones(size(sigvecMMF2_33)); 11 * ...

ones(size(sigvecMMF1_23)); 12 * ones(size(sigvecMMF2_23));];
258

259 group7 = [ones(size(sigvecMLE1_11)); 2 * ...
ones(size(sigvecMLE2_11)); 3 * ones(size(sigvecMLE1_12));

260 4 * ones(size(sigvecMLE2_12)); 5 * ...
ones(size(sigvecMLE1_22)); 6 * ones(size(sigvecMLE2_22));

261 7 * ones(size(sigvecMLE1_13)); 8 * ...
ones(size(sigvecMLE2_13)); 9 * ones(size(sigvecMLE1_33));

262 10 * ones(size(sigvecMLE2_33)); 11 * ...
ones(size(sigvecMLE1_23)); 12 * ones(size(sigvecMLE2_23));];

263

264 group8 = [ones(size(sigvecMMF1_11)); 2 * ...
ones(size(sigvecMMF2_11)); 3 * ones(size(sigvecMMF1_12));

265 4 * ones(size(sigvecMMF2_12)); 5 * ...
ones(size(sigvecMMF1_22)); 6 * ones(size(sigvecMMF2_22));

266 7 * ones(size(sigvecMMF1_13)); 8 * ...
ones(size(sigvecMMF2_13)); 9 * ones(size(sigvecMMF1_33));

267 10 * ones(size(sigvecMMF2_33)); 11 * ...
ones(size(sigvecMMF1_23)); 12 * ones(size(sigvecMMF2_23));];

268

269 group9 = [ones(size(sigvecMLE1_11)); 2 * ...
ones(size(sigvecMLE2_11)); 3 * ones(size(sigvecMLE1_12));

270 4 * ones(size(sigvecMLE2_12)); 5 * ...
ones(size(sigvecMLE1_22)); 6 * ones(size(sigvecMLE2_22));

271 7 * ones(size(sigvecMLE1_13)); 8 * ...
ones(size(sigvecMLE2_13)); 9 * ones(size(sigvecMLE1_33));

272 10 * ones(size(sigvecMLE2_33)); 11 * ...
ones(size(sigvecMLE1_23)); 12 * ones(size(sigvecMLE2_23));];

273

274 figure(6)
275 boxplot([sigvecMMF1_11; sigvecMMF2_11; sigvecMMF1_12; ...

sigvecMMF2_12; sigvecMMF1_22; sigvecMMF2_22; ...
276 sigvecMMF1_13; sigvecMMF2_13; sigvecMMF1_33; sigvecMMF2_33; ...

sigvecMMF1_23; sigvecMMF2_23], group6);
277 set(gca,'XTickLabel',{'MMF_11: 200','MMF_11: 2000', 'MMF_12: ...

200','MMF_12: 2000','MMF_22: 200','MMF_22: 2000', ...
278 'MMF_13: 200','MMF_13: 2000', 'MMF_33: 200','MMF_33: 2000', ...

'MMF_23: 200','MMF_23: 2000'})
279
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280 figure(7)
281 boxplot([sigvecMLE1_11; sigvecMLE2_11; sigvecMLE1_12; ...

sigvecMLE2_12; sigvecMLE1_22; sigvecMLE2_22; ...
282 sigvecMLE1_13; sigvecMLE2_13; sigvecMLE1_33; sigvecMLE2_33; ...

sigvecMLE1_23; sigvecMLE2_23], group7);
283 set(gca,'XTickLabel',{'MLE_11: 200','MLE_11: 2000', 'MLE_12: ...

200', 'MLE_12: 2000','MLE_22: 200','MLE_22: 2000', ...
284 'MLE_13: 200','MLE_13: 2000', 'MLE_33: 200','MLE_33: 2000', ...

'MLE_23: 200','MLE_23: 2000',})
285

286 figure(8)
287 boxplot([sigvecEC1_11; sigvecEC2_11; sigvecEC1_12; sigvecEC2_12; ...

sigvecEC1_22; sigvecEC2_22; ...
288 sigvecEC1_13; sigvecEC2_13; sigvecEC1_33; sigvecEC2_33; ...

sigvecEC1_23; sigvecEC2_23], group8);
289 set(gca,'XTickLabel',{'EC_11: 200','EC_11: 2000', 'EC_12: ...

200','EC_12: 2000','EC_22: 200','EC_22: 2000', ...
290 'EC_13: 200','EC_13: 2000', 'EC_33: 200','EC_33: 2000', ...

'EC_23: 200','EC_23: 2000'})
291

292 figure(9)
293 boxplot([sigvecFast1_11; sigvecFast2_11; sigvecFast1_12; ...

sigvecFast2_12; sigvecFast1_22; sigvecFast2_22; ...
294 sigvecFast1_13; sigvecFast2_13; sigvecFast1_33; ...

sigvecFast2_33; sigvecFast1_23; sigvecFast2_23], group9);
295 set(gca,'XTickLabel',{'Fast_11: 200','Fast_11: 2000', 'Fast_12: ...

200', 'Fast_12: 2000','Fast_22: 200','Fast_22: 2000', ...
296 'Fast_13: 200','Fast_13: 2000', 'Fast_33: 200','Fast_33: ...

2000', 'Fast_23: 200','Fast_23: 2000',})

1.4 Output

Before we discuss the output, we compare the computation times in table 1 for one
run of the same 200 MVT random variates for all methods used: MMF, MLE, ECME
and Fast. As expected, the brute force is the slowest by a huge margin. According
the Monte Carlo results7, the MMF method is much faster than the vanilla EM
algorithm. It was also shown that the ECME can have a dramatically faster rate
of convergence than the EM algorithm8. That being said, we can now compare
the MMF and the ECME in terms of speed and find that the ECME is roughly
three times faster. It was also shown that Fast is significantly faster than EM, "at
the expense of slightly decreased accuracy in the estimates"9. We are now able to
compare all three algorithm that stem from the EM algorithm. We find that Fast
takes only 6

1000
the amount of time compared to the MMF for the same calculation

and is thus also significantly faster than than all the others. Now, there is also a
caveat, at least for our implementation of the MMF. We apply stopping criteria
that could be altered to improve computation time. We use a maximum number

7Hasannasab, M., Hertrich, J., Laus, F. et al. Alternatives to the EM algorithm for ML
estimation of location, scatter matrix, and degree of freedom of the Student t distribution. Numer
Algor 87, 77–118 (2021). https://doi.org/10.1007/s11075-020-00959-w.

8Liu, C., and Rubin, D.B. ML estimation of the t distribution using EM and its extensions,
ECM and ECME. Statistica Sinica. Vol. 5. 19-390. (1995).

9Aeschliman,C., Park, J., and Cak, K.A. A Novel Parameter Estimation Algorithm for the
Multivariate t-Distribution and its Application to Computer Vision. Purdue University. (2010).
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of iterations and the absolute distance between the current and the updated values
in the MMF. If the former was small and the latter large, we would see very short
convergence times, however, the results would definitely suffer from this. We used
an adequately small tolerance value of 0.001 and 100 iterations. This should be
enough not to be misleading with regard to the relative computation time, which
is confirmed by the results looking very similar to the ones yielded by the other
methods. A second, smaller caveat: we used one single repetition. We could have
computed several and took the average value of the computation times to get an even
more accurate result. However, we are only really interested in the relative speed,
and they roughly persisted over several tries (that we did not report for simplicity).
In conclusion, the fast approximation is incredibly fast in comparison to the others
and the MLE is aggravatingly slow, using up nearly all computation time for this
assignment.

Table 1: Comparison of the Computation Time for One Run of the MMF, MLE,
ECME and Fast Approximation Method.

Time (in sec.) Normalized Time (in sec.)

MMF 0.1119 1
MLE 20.5520 183.7438

ECME 0.0379 0.3386
Fast 0.0007 0.0061

Note: The column ’Normalized Time’ computes the relative times w.r.t. the time
for the weighted MMF.

The outputs are displayed in figures 1-9. We used 500 repetitions and sample
sizes, T, of 200 and 2000, as suggested. The true value for degrees of freedom (df)
was taken to be 4. We compare the estimated values via MMF, MLE, ECME and
Fast method, hence the labelling on the x-axis (MMF: 200 means estimation via
MMF for 200 samples). We decided to show each parameter for every method of
estimation separately, just to show that everything worked fine. Before we dive
deeper into the single boxplots, we remind ourselves that we expect the boxplots to
be centred around 0. This is because we subtract the true value from all estimated
values to get the deviation from the truth.

Figure 1 shows the boxplots for the df parameter. We display the results for all
methods nicely in one table, which shows that all boxes are centred around 0. Fur-
ther, it shows that including more samples leads to a much shorter box in all cases.
This was to be expected, as more samples increase the accuracy, resp. decrease the
variance. The visual comparison between the methods is not so easy in terms of
box-size. It seems that the MLE’s boxes are slightly shorter than the rest, indicating
smaller variance. Paolella (2018) suggests using the direct method for MLE, which
could seem reasonable given the outputs presented here. However, they are not very
conclusive with regard to the comparison of the two methods, resp. their relative
performances. The ECME and Fast also give very similar results, which provides
an argument for using the Fast algorithm, considering the much faster computation
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times. As mentioned before, the Fast algorithm trades off speed for accuracy, still,
we only really observe the positive sides of this trade-off. Another thing all methods
have in common is that the centres of the boxplots are all slightly above 0, possibly
indicating a very small, positive bias. This is corrected when using more samples,
as the higher sample boxplots are perfectly centred on 0.

Figures 2-5 show the results for the estimation of the location parameter µ. Since
we are looking at a MVT in 3 dimensions, we plot each dimension separately, calling
the dimensions x, y and z. For two different sample sizes per array of estimates,
we arrive at six different boxplots per method. To plot all methods in one diagram
would cause more confusion than it would be informative, so there is a separate
diagram for each method. We see, again, that most of the boxes are centred around
0, as they should be. As in the case for the estimation of the df parameter, the
methods all give fairly similar results. This advocates for the use of the fastest
method.

Finally, we look at the estimates of the correlation matrix Σ in figures 6-9. As dis-
cussed before, we only need six estimates, as the mirrored values in the off-diagonal
are equivalent in a symmetric matrix. MLE_11:200 thus refers to the MLE of the
estimate at index (1,1) for 200 samples. Again, the estimates are centred around 0
and more samples decreases the box height, as was to be expected. The methods
give very similar results here as well. Only the ECME in figure 8 shows outliers
that are much farther from the centres of the boxplots than in the other estimation
techniques. This is indicative of a larger variance, so we suggest using any of the
methods other than ECME. Still, everything seems to work as expected. We might
add one caveat: we must pay great attention to the Σ we use in the creation of
random variates. If the eigenvalues thereof are such that they are close to being
PSD, then the estimates of the diagonal values can be biased.

One last thing we did not mention so far are the ranges on the y-axes. First, and
most logically, we wanted to use the largest range for all graphs. However, this led
to some boxes being incredibly thin, so the visual comparison is rendered even more
difficult than it already is. So, we resorted to using the automatically generated
y-axis ranges and urge the reader to pay attention to the scales between graphs. We
notice that the variances in for the df and location parameters in figures 1-5 have
very similar ranges, indicating very similar variances. The estimates of Σ in figures
6-9, however, show larger variances, notably also more outliers. This indicates that
the estimates of Σ are the most imprecise of all parameters. As mentioned above,
the ECME method performs the worst in terms of estimation variance for Σ.
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Figure 1: Estimates of df with MMF, MLE, ECME and Fast.
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Note: The figure shows the boxplots for the estimates of the degrees of freedom (df) with MMF,
MLE, ECME and Fast for the sample sizes T of 200 and 2000.
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Figure 2: Estimates for Each Dimension of µ with MMF.
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Note: The figure shows the boxplots for the estimates of each dimension of the location
parameter µ with MMF for sample sizes T of 200 and 2000.
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Figure 3: Estimates for Each Dimension of µ with MLE.
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Note: The figure shows the boxplots for the estimates of each dimension of the location
parameter µ with MLE for the sample sizes T of 200 and 2000.
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Figure 4: Estimates for Each Dimension of µ with ECME.
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Note: The figure shows the boxplots for the estimates of each dimension of the location
parameter µ with ECME for the sample sizes T of 200 and 2000.
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Figure 5: Estimates for Each Dimension of µ with Fast.
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Note: The figure shows the boxplots for the estimates of each dimension of the location
parameter µ with Fast for the sample sizes T of 200 and 2000.
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Figure 6: Estimates for Each Relevant Index of Σ with MMF.
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Note: The figure shows the boxplots for the estimates of each relevnat index of the scale
parameter Σ with MMF for the sample sizes T of 200 and 2000.
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Figure 7: Estimates for Each Relevant Index of Σ with MLE.
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Note: The figure shows the boxplots for the estimates of each relevant index of the scale
parameter Σ with MLE for the sample sizes T of 200 and 2000.

22



Question 1

Figure 8: Estimates for Each Relevant Index of Σ with ECME.
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Note: The figure shows the boxplots for the estimates of each relevnat index of the scale
parameter Σ with ECME for the sample sizes of 200 and 2000.
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Figure 9: Estimates for Each Relevant Index of Σ with Fast.

Fa
st_

11
:	2

00

Fa
st_

11
:	2

00
0

Fa
st_

12
:	2

00

Fa
st_

12
:	2

00
0

Fa
st_

22
:	2

00

Fa
st_

22
:	2

00
0

Fa
st_

13
:	2

00

Fa
st_

13
:	2

00
0

Fa
st_

33
:	2

00

Fa
st_

33
:	2

00
0

Fa
st_

23
:	2

00

Fa
st_

23
:	2

00
0

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Note: The figure shows the boxplots for the estimates of each relevnat index of the scale
parameter Σ with Fast for the sample sizes T of 200 and 2000.
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2 Usage of Weighted Likelihood

For the second question, we read "Chapter 13: Weighted Likelihood" from "Linear
Models and Time-Series Analysis"10. We first provide a quick summary of the tech-
niques used in order to justify the need for weighted likelihood estimation.

There are two ways to improve forecast in time-series models without much effort.
One can use shrinkage on the one hand to obtain estimators with lower mean-squared
errors despite finite amount of data. On the other hand, weighted likelihood results
in improved forecasting and accounts for the fact that the proposed model is incor-
rect due to mis-specification. As we learnt, using an i.i.d setting for financial asset
returns results in a mis-specified model, wrongly assuming identically distributed
data.
Each observation in traditional likelihood-based interference is equally weighted in
the likelihood. This approach is only optimal when the data-generating-process
(dgp) is correctly specified. For a financial asset return model this does not hold,
since the dgp is rather complicated, making it nearly impossible to specify a proper
model. Furthermore, as we aim to construct a forecast at future time T+1 with time-
series models, possibly more recent observations contain more information about the
distribution at T+1, than more distant observations, and might therefore need to
receive more weight11. This method would improve the forecasting power of a fi-
nancial asset return model. Giving more weights to more recent observations, the
weighted likelihood accounts for non-linearities in the true dgp. Thus, using a linear
time-series model with weighted likelihood is a reasonable approximation to the true
dgp of financial asset returns, which is complicated and nonlinear, especially for a
multivariate sequence.
For a set of observations v, vector of weights w = (w1, ..., wv) is used and standard-
ized to a sum (such as v or 1). A simple hyperbolic weighting scheme looks like
this:

wt ∝ (v − t+ 1)ρ−1,
v∑

t=1

wt = 1, (3)

where ρ is a single parameter dictating the shape of weighting function, i.e. ρ < 1
gives more recent observations relatively more weight, ρ > 1 gives more recent ob-
servations relatively less weight, ρ = 1 is equal to the standard, equally weighted
likelihood.
Both shrinkage and weighted likelihood can and should be used in conjunction as
they address different problems of the estimation.

We structure this section like we did with question 1. In section 2.1, we provide
the weight-adapted code for the MMF and the same for the MLE in section 2.2 In
section 2.3, we provide the code to simulate non-identically distributed MVT ran-
dom variates and estimate them for different values of ρ over 500 repetitions. Lastly,
in section 2.4 we show the resulting boxplots and discuss the results.

10Paolella, M. S. Linear models and time-series analysis: regression, ANOVA, ARMA and
GARCH. John Wiley & Sons (2019)

11Hildreth-Houck find that random disturbance shows certain distributional properties. Sec-
ondly, a factor’s influence may systematically vary with time. Robert Engle (2001) states that
more recent events are more relevant and thus should have more weight in the model.
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2.1 Weighted MMF

In the following section we chose ρ to be the parameter dictating the hyperbolic
decay from equation 3. The following code extends the code for the MMF in section
1.1 by allowing for the ρ parameter to be passed as an argument. This allows varying
weights, depending on the decay rate ρ (line 34). Nota bene, the code in 1.1 already
used weights, however, they were just taken to be random. Now we assume they
have a structure determined by ρ.
The authors of the paper on the MMF algorithm specify that they allow for arbitrary
weights that sum up to 1. The code given in listing 13.1. of the Time-Series book for
the calculation of the weights using hyperbolic decay, multiplies the weight vector
with T in the last step. This gives the result, that the weights don’t sum up to 1.
At first, we thought this might be a problem, however, it turns out that the output
is not altered by including the factor T.

1 % =======================Weighted MMF Function======================
2 % This calls the relevant MMF function and removes outliers. As ...

taken from the statistical inference book.
3 % ==================================================================
4

5 % This calls the relevant MMF function and removes outliers. As ...
taken from the statistical inference book.

6 function [ solvec , crit, iter] = mvtMMFweighted(y, d, rho, tol, ...
maxit)

7 if nargin < 4 , maxit=5e4 ; end , if nargin < 3, tol =1e−6; end
8 outlier = 0;
9 while 1

10 [solvec, crit, iter] = MMF(y, d, rho, tol, maxit);
11 if all (¬isnan ( solvec ) ) , break
12 else
13 y=sort(y) ; left =y(2)−y(1) ; right =y(end)−y ( end−1) ;
14 if left > right , y=y ( 2: end ) ; else y=y ( 1: end−1) ...

; end
15 ' removing an outlier '; outlier = outlier +1;
16 end
17 end
18 end
19

20 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21 % this function computes the MMF of the MVT
22 function [solvec, crit, iter] = MMF(y, d, rho, tol, maxit)
23 % initialise the parameters, with df = epsilon > 0
24 mu_old = zeros(d,d); df_old = zeros(d,1);
25 mu_old(1,:) = mean(y); sigma_r = cov(y); df_old(1) = 2;
26 iter = 0; crit = 0;
27 len_y = size(y); n = len_y(1);
28

29 old = [mu_old sigma_r df_old]; new = zeros(d, 2*d+1);
30

31 % Initialise random weight vec: simulate len(y) random numbers and
32 % normalise them via division by sum
33 T=length(y); tvec=(1:T); omega=(T−tvec+1).^(rho−1); ...

w=(omega'./sum(omega))';
34

35 % Begin iteration for the EM
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36 while 1
37 iter= iter +1;
38 % Define parameters for iteration
39 mu_r = old(1, 1:d) ; sigma_r = old(:, d+1:2*d); df_r = ...

old(1, 2*d+1);
40

41 % Append all ∆_ri and gam_ri values
42 ∆_r = zeros(1,n);
43 gam_r = zeros(1,n);
44

45 % Loop over all n samples
46 for i = 1:n
47

48 % E−step: compute the weigths
49 % ∆:
50 dif1 = y(i,:)−mu_r;
51 tim1 = mtimes(dif1, inv(sigma_r));
52 ∆_r(i) = mtimes(tim1, dif1');
53

54 % gamma (matrix of over Nxd)
55 gam_r(i) = (df_r + d)/(df_r + ∆_r(i));
56

57 end
58

59 % M−step:
60 % new mu:
61 mu_rplus1 = mtimes((w.*gam_r),y) ./ sum(w.*gam_r);
62 new(1, 1:3) = mu_rplus1;
63

64 % new sigma:
65 temp1 = (w.*gam_r).*y';
66 sigma_rplus1 = mtimes(temp1,y) ./ sum(w.*gam_r);
67 new(1:3, 4:6) = sigma_rplus1;
68

69 % Find 0's of the function for df
70 temp = (df_r+d)./(df_r+∆_r);
71 df_fun = @(x) phi(x/2) − phi((x+d)/2) + ...

sum(w.*(temp−log(temp)−1));
72

73 % Find the 0 of the function and append it to array
74 df_rplus1 = fzero(df_fun, [1 20]);
75 new(1, 2*d+1) = real(df_rplus1);
76

77 % Stopping criteria
78 crit = max ( abs ( old(1,end) − new(1,end) ) ) ; solvec=new ...

; if any ( isnan ( solvec ) ) , break , end
79 if ( crit < tol ) || ( iter ≥ maxit ) , break , end
80 old = new;
81

82 end
83 end
84

85 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
86 % Used to compute phi in the fzero−function
87 function phi = phi(y)
88 y = abs(y);
89 phi = psi(y) − log(y);
90 end
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2.2 Weighted MLE

This section, similarly to the previous section, augments the codes for the MLE in
section 1.2 by allowing for weights determined by the decay rate ρ. The relevant
changes mainly affect line 36. To stay consistent with the implementation of the
weighted MFF in section 2.1, we include the factor T in the calculation of the
weights.

1 % =======================MMF Function===============================
2 % This function calculates the MLE as taken from the statistical ...

inference book.
3 % ==================================================================
4

5 function [param,stderr,iters,loglik,Varcov] = ...
MVTestimation_3dweighted(x,rho)

6 [nobs, d]=size(x);
7

8 %%%%%%%% k mu1 mu2 mu3 s11 s12 s22 s13 s33 s23
9 bound.lo= [ 0.2 −1 −1 −1 0.01 −90 0.01 −90 0.01 −90];

10 bound.hi= [ 20 1 1 1 90 90 90 90 90 90];
11 bound.which=[ 1 0 0 0 1 1 1 1 1 1];
12 initvec =[1 −0.8 −0.2 −0.5 20 0 20 0 20 0];
13

14 maxiter=300; tol=1e−7; MaxFunEvals=length(initvec)*maxiter;
15 opts=optimset('Display','iter','Maxiter',maxiter,'TolFun',
16 tol,'TolX',tol,'MaxFunEvals',MaxFunEvals,'LargeScale','Off');
17 [pout,fval,¬,theoutput,¬,hess]= ...
18 fminunc(@(param) ...

MVTloglik(param,x,bound,rho),einschrk(initvec,bound),opts);
19 V=inv(hess)/nobs; % Don't negate because we work with the ...

negative of the loglik
20 [param,V]=einschrk(pout,bound,V); % transform and apply ∆ method ...

to get V
21 param=param'; Varcov=V; stderr=sqrt(diag(V)); % Approximate ...

standard errors
22 loglik=−fval*nobs; iters=theoutput.iterations;
23

24 function ll=MVTloglik(param,x,bound,rho)
25 if nargin<3, bound=0; end
26 if isstruct(bound), param=einschrk(real(param),bound,999); end
27 [nobs, d]=size(x); Sig=zeros(d,d); k=param(1); mu=param(2:d+1);
28 Sig(1,1)=param(d+2); Sig(2,2)=param(d+4); Sig(1,2)=param(d+3); ...

Sig(2,1)=Sig(1,2);
29 Sig(3,3)=param(d+6); Sig(1,3)=param(d+5); Sig(3,1)=Sig(1,3); ...

Sig(2,3)=param(d+7);
30 Sig(3,2)=Sig(2,3);
31

32 if min(eig(Sig))<1e−10, ll=1e5;
33 else
34 pdf=zeros(nobs,1);
35 for i=1:nobs, pdf(i) = mvtpdfmine(x(i,:),k,mu,Sig); end
36 T=length(x); tvec=(1:T); omega=(T−tvec+1).^(rho−1); ...

w=T.*omega'/sum(omega);
37 llvec=log(pdf); ll = −mean(w.*llvec); if isinf(ll), ll=1e5; end
38 end
39
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40 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
41 function y = mvtpdfmine(x,df,mu,Sigma)
42 % x is a d X 1 vector. Unlike Matlab's version, cannot pass a ...

matrix.
43 % Matlab's routine accepts a correlation (not dispersion) matrix.
44 % So, just need to do the usual scale transform. For example:
45 % x=[0.2 0.3]'; C = [1 .4; .4 1]; df = 2;
46 % scalevec=[1 2]'; xx=x./scalevec; mvtpdf(xx,C,df)/prod(scalevec)
47 % Same as:
48 % Sigma = diag(scalevec) * C * diag(scalevec); ...

mvtpdfmine(x,df,[],Sigma)
49 d=length(x);
50 if nargin<3, mu = []; end, if isempty(mu), mu = zeros(d,1); end
51 if nargin<4, Sigma = eye(d); end
52 x = reshape(x,d,1); mu = reshape(mu,d,1); term = (x−mu)' * ...

inv(Sigma) * (x−mu);
53 logN=−((df+d)/2)*log(1+term/df); ...

logD=0.5*log(det(Sigma))+(d/2)*log(df*pi);
54 y = exp(gammaln((df+d)/2) − gammaln(df/2) + logN − logD);
55

56

57 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
58 function [pout, Vout]= einschrk (pin, bound, Vin)
59 lo=bound.lo ; hi=bound.hi ; welche=bound.which;
60 if nargin < 3
61 trans=sqrt((hi−pin)./(pin−lo ) ) ; pout=(1−welche).*pin + ...

welche.*trans ;
62 Vout =[];
63 else
64 trans=(hi+lo.*pin.^2) ./ (1+ pin .^2) ; pout=(1−welche).* ...

pin + welche .* trans ;
65 % now adjust the standard e r r o r s
66 trans=2*pin .* (lo−hi ) ./ (1+pin .^2) .^2;
67 d=(1−welche) + welche .* trans ; % either unity or ∆ method .
68 J=diag (d) ; Vout = J* Vin * J ;
69 end

2.3 Code for Output

First, we simulate a sequence of MVT random variables in order to obtain indepen-
dently, both not identically distributed random variates from a MVT distribution,
which exhibit time variation in the df parameter. We follow the suggestions in the
assignment and create a grid of T values between 6 and 3 to obtain a sequence of
decaying parameters for the df. Next, we simulate one 3-D MVT realization for
every value of the df parameter, with the same true values for µ and for Σ. We
then loop over values of ρ = 0.2, 0.3, ..., 1 and the number of repetitions for both
methods of estimation, MMF and MLE. Finally, we plot the outcomes and report
the computing time. The code is structured in a way, such that both methods are
computed in one run. Since we also want to know the computing time, we simply
comment out the respective lines for the other method.

29



Question 2

1 % ==========================Exercise 2=============================
2 % We simulate 200 and 2000 random variates of a multivariate t ...

distribution and estimte the parameters via MMF and MLE. The ...
outputs are plotted as boxplots.

3 % =================================================================
4

5

6 % Start Timer
7 tStart = cputime;
8

9

10 % Define variables
11 T = 200; d=3;
12 rhovec = 0.2:0.1:1; rholen = length(rhovec);
13 MMF1=[]; MLE1=[];
14 MMF2=[]; MLE2=[];
15 MMF3=[]; MLE3=[];
16 MMF4=[]; MLE4=[];
17 MMF5=[]; MLE5=[];
18 MMF6=[]; MLE6=[];
19 MMF7=[]; MLE7=[];
20 MMF8=[]; MLE8=[];
21 MMF9=[]; MLE9=[];
22

23

24 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
25

26 % Generate a random n x n matrix
27 sigma = −1 + 2.*rand(d,d);
28 % % construct a symmetric matrix
29 sigma = triu(sigma.',1) + tril(sigma);
30 % % Adding perturbations along the diagonal of a PSD matrix will ...

make it PD
31 sigma = sigma + d*eye(d)
32 % Check if sigma is PD
33 %{
34 symm = issymmetric(sigma)
35 d = eig(sigma)
36 isposdef = all(d>0)
37 %}
38

39 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
40

41

42 df_estimateMMF = [];
43 df_estimateMLE = [];
44

45 for i = 1:rholen, rho = rhovec(i)
46

47 for rep = 1:1, rep
48 % Create linspace for decay
49 grid = linspace(6,3,T);
50

51 % Create array for appending of decayed y
52 y_decay = zeros(T,d);
53

54 % Calculate y for decaying df
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55 for t=1:T, y_decay(t,:) = MVTrandom(sigma, grid(t), 1, ...
[0 0 0]); end

56

57 % Estimate parameters for MMF
58 EM = mvtMMFweighted(y_decay, d, rho, 1e−3, 100);
59

60 % Estimate parameters for MLE
61 [param,stderr,iters,loglik,Varcov] = ...

MVTestimation_3dweighted(y_decay, rho);
62

63 % Append df parameters to array for plotting
64 df_estimateMMF(end+1) = EM(1,7);
65 df_estimateMLE(end+1) = param(1);
66 end
67

68 end
69

70

71 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
72 % Boxplots
73 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
74 % For the MMF estimates. Substract the true value is not ...

possible, because
75 % the parameters vary over the dataset.
76

77

78 MMF1 = df_estimateMMF(1:rep)';
79 MMF2 = df_estimateMMF(rep+1:2*rep)';
80 MMF3 = df_estimateMMF(2*rep+1:3*rep)';
81 MMF4 = df_estimateMMF(3*rep+1:4*rep)';
82 MMF5 = df_estimateMMF(4*rep+1:5*rep)';
83 MMF6 = df_estimateMMF(5*rep+1:6*rep)';
84 MMF7 = df_estimateMMF(6*rep+1:7*rep)';
85 MMF8 = df_estimateMMF(7*rep+1:8*rep)';
86 MMF9 = df_estimateMMF(8*rep+1:9*rep)';
87

88

89 % For the MLE estimates.
90 MLE1 = df_estimateMLE(1:rep)';
91 MLE2 = df_estimateMLE(rep+1:2*rep)';
92 MLE3 = df_estimateMLE(2*rep+1:3*rep)';
93 MLE4 = df_estimateMLE(3*rep+1:4*rep)';
94 MLE5 = df_estimateMLE(4*rep+1:5*rep)';
95 MLE6 = df_estimateMLE(5*rep+1:6*rep)';
96 MLE7 = df_estimateMLE(6*rep+1:7*rep)';
97 MLE8 = df_estimateMLE(7*rep+1:8*rep)';
98 MLE9 = df_estimateMLE(8*rep+1:9*rep)';
99

100

101

102 % Create the two boxplots as subplots
103

104 group1 = [ones(size(MMF1)); 2 * ones(size(MMF2)); 3 * ...
ones(size(MMF3)); 4 * ones(size(MMF4));

105 5 * ones(size(MMF5)); 6 * ones(size(MMF6)); 7 * ...
ones(size(MMF7)); 8 * ones(size(MMF8));

106 9 * ones(size(MMF9))];
107 %
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108 group2 = [ones(size(MLE1)); 2*ones(size(MLE2)); ...
3*ones(size(MLE3)); 4*ones(size(MLE4));

109 5*ones(size(MLE5)); 6*ones(size(MLE6)); 7*ones(size(MLE7)); ...
8*ones(size(MLE8));

110 9*ones(size(MLE9))];
111

112

113 figure(1)
114 boxplot([MMF1; MMF2; MMF3; MMF4; MMF5; MMF6; MMF7; MMF8; MMF9], ...

group1);
115 set(gca,'XTickLabel',{'MMF_0.2','MMF_0.3', ...

'MMF_0.4','MMF_0.5','MMF_0.6','MMF_0.7','MMF_0.8',
116 'MMF_0.9','MMF_1'})
117 ylim([0 10])
118

119 figure(2)
120 boxplot([MLE1; MLE2; MLE3; MLE4; MLE5; MLE6; MLE7; MLE8; MLE9], ...

group2);
121 set(gca,'XTickLabel',{'MLE_0.2','MLE_0.3', ...

'MLE_0.4','MLE_0.5','MLE_0.6','MLE_0.7','MLE_0.8',
122 'MLE_0.9','MLE_1'})
123 ylim([0 10])
124

125

126 % End Timer
127 eEnd = cputime−tStart

2.4 Output

Before analysing the results, we compare the calculation speeds for the two methods
in table 2. As expected, we clearly see that the brute force MLE takes much longer:

Table 2: Comparison of the Computation Time for One Run of the Weighted MMF
vs. MLE Method.

Time (in sec.) Normalized Time (in sec.)

Weighted MMF 0.0195 1
Weighted MLE 2.3302 119.2328

Note: The column ’Normalized Time’ computes the relative times w.r.t. to the
time for the weighted MMF.

Figures 10 and 11 show our results for the estimation of the df using the weighted
MMF and MLE respectively, with 200 samples and 500 repetitions. We decided to
use fewer samples, so that the variance, i.e. length of boxplots, would be greater and
the differences thus more easily visible to the naked eye. The outputs are presented
as a function of ρ, where ρ < 1 gives more ever more weight to recent observations,
as described in section 2 This means that we effectively use "less" data the smaller ρ,
resulting in higher variance, due to the down-weighting of older observations. This
means, we should expect longer boxplots for smaller values of ρ. Using the same
argument, the smaller ρ is, the closer we expect the centre of the boxplot to be to 3,
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the final value of df or the value it converges to. Thus, the estimate would exhibit
less bias. This stems from the fact that, if we were to use our results in forecasting
as described in the introduction in section 2, we want the estimated df to be closer
to the final value of 3, which is why we put more weight on more recent observations.
Higher values of ρ, which results in more equal weights, would give a more biased
estimate that is around the average of 6 and 3, so around 4.5.
Looking at the variance in both figures, we see that the length of the boxplots
decreases with increasing ρ, as expected. In the first question, the length of the
boxplots depended on the sample size, which is not varying in this question. As
was the dominant picture in the first question, the two methods yield very similar
results.
The bias for both methods behaves according to our expectations, namely increasing
with ρ to a value around 4.5. The leftmost centre should be the least biased, i.e.
closest to the final value 3. This is absolutely the case, with the centres in both
cases being below 4. While the trend of the bias certainly behaves the way we ex-
pect it to, the pattern could definitely be clearer. We could not resist exploring this
avenue and present the results for the same question, but with a higher sample size
(T=500, instead of T=200) in the Appendix (3.1). We wanted to try even higher
sample sizes, like T = 2000, however, our computers crashed twice (!) after 10 hours
of calculations, so we stopped our attempts. For the sake of completeness, we still
report the figure with 500 samples. We can somewhat see that the boxplots are a bit
shorter in general, as expected when using larger sample sizes. The pattern of the
bias is not exacerbated very much, but it must be when using even more samples.
We remember that the differences in question 1 between 200 and 2000 samples were
quite big already. This concludes our analysis.
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Figure 10: Estimates of df for Different Values of ρ Using MMF.

MMF_
0.2

MMF_
0.3

MMF_
0.4

MMF_
0.5

MMF_
0.6

MMF_
0.7

MMF_
0.8

MMF_
0.9

MMF_
1

0

2

4

6

8

10

Note: The figure shows the boxplots for the estimates of the degrees of freedom (df) for value of
ρ = 0.2, 0.3, ..., 1 using the MMF method.
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Figure 11: Estimates of df for Different Values of ρ Using MLE.
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Note: The figure shows the boxplots for the estimates of the degrees of freedom (df) for value of
ρ = 0.2, 0.3, ..., 1 using the MLE method.
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3 Appendix

3.1 Plot of df Function

Figure 12: Plot for the df Function from the MMF Algorithm.

Note: This is just a plot of a single iteration in the MMF algorithm. The function does not
change much in form over the iterations, so one snapshot should be enough.
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3.2 Weighted Estimates with Higher Sample Size

Figure 13: Estimates of df for Different Values of ρ Using MMF (T=500).
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Note: The figure shows the boxplots for the estimates of the degrees of freedom (df) for value of
ρ = 0.2, 0.3, ..., 1 using the MMF method.
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Figure 14: Estimates of df for Different Values of ρ Using MLE (T=500).
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Note: The figure shows the boxplots for the estimates of the degrees of freedom (df) for value of
ρ = 0.2, 0.3, ..., 1 using the MLE method.
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