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Question 1

1 Parametric and Non-Parametric Bootstrap of ES
based on Student t Distribution (Student t As-
sumption in Param. Bootstrap)

In question 1 we define three true parameters (degrees of freedom, location and
scale) and simulate a T-length sequence of IID Student t random variates. Based on
these simulations, we use the bootstrap technique to find a 90% confidence interval
(CI) for the empirical expected shortfall (ES) based on B bootstrap replications. We
then report the actual coverage probability and the average lengths of the confidence
intervals as a function of T for both the parametric and non-parametric bootstrap.

1.1 Code

Depending on whether the parametric or non-parametric bootstrap is applied, we
comment out the respective lines (line 61 is non-parametric and line 62 is paramet-
ric). The same goes for the method of maximum likelihood estimation (MLE): lines
50-52 are for the MLE using the built-in Matlab function, lines 56-57 for the MLE
using the function provided in the statistical inference book, which is supplied in
the Appendix (5.3). We redefine the parameter estimates that are yielded by each
function, because they do not return the parameters in the same order. Of course,
we could have changed the according functions, but we found it easier this way; the
reader needs to pay attention to which parameter we are discussing. We use the
simpler implementation of the MLE function from the book, because we did not
observe much difference in the outputs of the programs and it turned out to be a
bit slower. Given our limited computing resources, we thought it best to take the
trade-off of bigger sample sizes and repetitions at the cost of slightly less accurate
MLEs. If the reader wishes to change the program below to use the more sophis-
ticated MLE function, simply change ’tmaxlik0’ to ’tmaxlik’ and accommodate for
the fact that the output of the latter consists also of the standard errors of the es-
timated parameters. For completeness, the more sophisticated function is provided
in the Appendix (5.5).
Additionally, we loop over all values of T and append the values in a nice vector
that facilitates the copying to Latex. All codes are structured so that looping is
possible, but if one wishes to run a simple specification, all variables are defined and
commented out in the inner part of the loop, such that it could be copied to a new
script and run individually.
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Question 1

1 % =========================Exercise 1==============================
2 % Simulate T−length vectors of IID location scale student t data
3 % and use parametric and non−parametric bootstrap to check whether
4 % the true ES in the CI. This yields the actual coverage and the
5 % average lengths of the CI.
6 % =================================================================
7

8 % The output for each T will be appended to these vectors
9 acc = [];

10 CI = [];
11

12 % Loop over all values of T
13 for T = [500 1000 2000]
14

15 % Define Variables
16 rand('twister',6) % set seed value so we can replicate results
17 rep = 300;
18 p = 0.9; alpha_CI = 0.1; alpha_VaR = 0.01;
19 loc = 1; scale = 2; df = 4; % set parameters for student t
20 % distribution
21 initvec = [df loc scale]; % needed for tlikmax0
22 B1 = 1e3; ESvec = zeros(B1,1); %set parameters for bootstrap
23 bool_acc = zeros(rep,1); length_ci = zeros(rep,1);% vector for
24 % coverage accuracy and CI length
25

26 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
27

28 % Compute True ES to check if it is in CI
29 c01 = tinv(alpha_VaR , df); % left tail quantile, for loc−0
30 % scale−1
31 truec = loc+scale*c01; % left tail quantile c
32 ES01 = −tpdf(c01,df)/tcdf(c01,df) * (df+c01^2)/(df−1);
33 trueES = loc+scale*ES01;
34

35

36 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
37

38

39 % Loop over repetitions
40 for i=1:rep
41

42 % Create random variates of student t distribution
43 % and calculate empirical
44 % ES for comparison with true ES with bootstrap
45 data = loc+scale*trnd(df,T,1); % random variate for
46 % student t distribution
47

48 % Calculation of MLE for parametric bootstrap with matlab
49 %function, output: loc scale df
50 %theta_mle_matlab = mle(data,'Distribution','tLocationScale');
51 %loc_mle = theta_mle_matlab(1); scale_mle
52 %= theta_mle_matlab(2); df_mle = theta_mle_matlab(3);
53

54 % Calculation of MLE for parametric bootstrap with
55 % function from the book, output: df loc scale
56 theta_mle_book = tlikmax0(data, initvec);
57 loc_mle = theta_mle_book(2); scale_mle = ...
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Question 1

theta_mle_book(3); df_mle = theta_mle_book(1);
58

59 % bootstrap
60 for b1=1:B1
61 ind = unidrnd(T,[T,1]); bootsamp=data(ind); % nonpara boot
62 %bootsamp = loc_mle+scale_mle*trnd(df_mle,T,1); % para boot
63 VaR = quantile(bootsamp, alpha_VaR);
64 temp = bootsamp(bootsamp≤VaR); ESvec(b1)=mean(temp);
65 end
66 ci = quantile(ESvec,[alpha_CI/2 1−alpha_CI/2]);
67 bool_acc(i) = (trueES>ci(1)) & (trueES<ci(2)); % check
68 %whether the true value is in the CI
69 length_ci(i) = ci(2)−ci(1); % calculate the length of the CI
70

71 end
72 length90 = mean(length_ci); % calculate mean length of CI
73 actual90 = mean(bool_acc); % calculate actual coverage
74 %probability
75

76 % Append the results to the vectors created at the beginning
77 acc(end+1) = actual90;
78 CI(end+1) = length90;
79

80 end
81

82 % Print the results for all T after the loop is done
83 acc
84 CI

1.2 Output

Table 1 compares the coverage accuracy and the average CI length for different
sample sizes (T) at 300 repetitions. Our computers could hardly handle more rep-
etitions than 300 without occupying all computing power for whole days. In this
relatively shorter question, we could have used more repetitions, but wanted to stay
consistent with all the other questions. It seemed to have no impact, in the sense
that the results matched our expectations and a test with more repetitions did not
alter the patterns in the outcome, as described in the following paragraph.

As expected, the parametric performs better than the non-parametric bootstrap,
because the parametric bootstrap assumes the correct underlying model, namely
the regular Student t distribution. Furthermore, both bootstrap model’s coverage
accuracies increase in the sample size T, whereas the CI lengths decrease in T; this
matches our expectations. The actual coverage is very high for the parametric boot-
strap, yielding values very close to 11. This is because the parametric is supposed
to perform extremely well, as the model assumption therein is correct, matching the
true underlying distribution.
The comparison between the Matlab code for the MLE in the book2 and the built-in

1Obviously, this might change if we used more repetitions, but it shows that our code works as
intended.

2Paolella, M. S. (2018). Fundamental Statistical Inference: A Computational Approach (Vol.
216). John Wiley Sons.
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Matlab code shows that both values are nearly identical up to some small simulation
error.

Finally, in table 2 we look at different values of bootstrap replications (B) to check
whether smaller values than 1000 would have been enough. Since we have shown
already in table 1 that the two approaches for calculating the MLE are identical, we
only use the function provided in the book for the comparison and for all calculation
from here on forth. The reason for this is that the calculations proved to be faster
using the function provided in the book. As we can see, the performance (i.e. the
actual coverage, but we will call it performance) increases in T. Furthermore, the
performance, holding T constant, is very similar for different values of B, showing
that B=250 would have already been sufficient.

Correction: We see that the actual coverage of the non-parametric bootstrap in-
creases with the sample size and does converge to the nominal coverage of 90%.
Contrary to our expectations, the parametric bootstrap does not perform better.
The actual coverage goes far beyond that of the nominal 90% and even seems to con-
verge to 1. This is not, as we initially supposed, an indication of over-achievement,
but rather one of bad performance. In the following two subsections, we try to
account for different probability levels for the ES and even larger sample sizes. Fur-
ther, we present the code (not the results) for a double bootstrap, which might also
correct for this issue.

Table 1: Parametric and Non-Parametric Bootstrap for True ES based on a Student
t Distribution.

CI Length Actual Coverage

T = 500 T = 1000 T = 2000 T = 500 T = 1000 T = 2000

df = 4

Parametric (MLE Book) 6.6999 4.9340 3.5236 0.9667 0.9867 0.9867
Parametric (MLE Matlab) 6.8780 4.9557 3.5952 0.9667 0.9800 0.9899

Non-Parametric 5.2810 4.1574 3.2968 0.6833 0.7667 0.8133

Note: We use location 1 and scale 2 for the true model. The values were calculated
at significance level α=0.1 and for B=1000.

1.3 Using Different Probability Levels for ES

In the following, we try to find a solution for the bad coverage performance we
found in reports for the first question. We thought that an actual coverage of close
to 1 was an indicator of over-achievement, however, as per your mail, it is simply
a bad performance. To amend this, we try two different approaches. Firstly, we
use different probability levels for the ES (α)3 for a constant sample size T and for
increasing sample sizes T. As a second approach, we use a double bootstrap, which
is ’precisely designed to help correct for this issue’.

3Not to be confused with α_stable, which is the tail index for a stable distribution and always
has the subscript ’stable’.

4



Question 1

Table 2: Effect of B on the Actual Coverage of the Parametric Bootstrap Using
the MLE Function Provided in the Book.

T = 100 T = 500 T = 2000

B = 250 0.8810 0.9660 0.9860
B = 500 0.8700 0.9590 0.9790
B = 1000 0.8840 0.9480 0.9850

Note: We use location 1 and scale 2 for the true model. The values were calculated
at significance level α=0.1 for B=250, 500, 1000.

In this section, we use different probability levels for the ES, namely 1%, 5% and
10%. We hope to get an actual coverage around the nominal coverage of 90%, still
expecting the parametric bootstrap to perform better than the non-parametric one.

1.3.1 Code

This code is very similar to the one presented in question 1 (1.1), with the exception
that we loop over different probability levels for the ES.

1 % ========================Exercise 1. i)===========================
2 % Simulate T−length vectors of IID location scale student t data
3 % and use parametric and non−parametric !!DOUBLE!! bootstrap to ...

check whether
4 % the true ES in the CI. This yields the actual coverage and the
5 % average lengths of the CI for different proabability levels ...

for the ES.
6 % =================================================================
7

8 % Loop over all sample sizes (T) for different probability ...
levels for the

9 % ES (alpha_CI):
10 for T = [1000 10000 100000]
11 acc = []; % The output for each T will be appended to these ...

vectors
12 CI = [];
13

14 for alpha_CI = [0.01 0.05 0.1]
15

16 % Define Variables
17 rand('twister',6) % set seed value so we can replicate results
18 rep = 200;
19 p = 0.9; alpha_VaR = 0.01; %alpha_CI = 0.1;
20 loc = 1; scale = 2; df = 4; % set parameters for student t ...

distribution
21 initvec = [df loc scale]; % needed for tlikmax0
22 B1 = 1e3; ESvec = zeros(B1,1); %set parameters for bootstrap
23 bool_acc = zeros(rep,1); length_ci = zeros(rep,1);% vector ...

for coverage accuracy and CI length
24

25

26 % Compute True ES to check if it is in CI
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27 c01 = tinv(alpha_VaR , df); % left tail quantile, for loc−0 ...
scale−1

28 truec = loc+scale*c01; % left tail quantile c
29 ES01 = −tpdf(c01,df)/tcdf(c01,df) * (df+c01^2)/(df−1);
30 trueES = loc+scale*ES01;
31

32

33 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
34

35

36 % Loop over repetitions
37 for i=1:rep
38

39 % Create random variates of student t distribution and ...
calculate empirical

40 % ES for comparison with true ES with bootstrap
41 data = loc+scale*trnd(df,T,1); % random variate for ...

student t distribution
42

43 % Calculation of MLE for parametric bootstrap with matlab ...
function, output: loc scale df

44 %theta_mle_matlab = mle(data,'Distribution','tLocationScale');
45 %loc_mle = theta_mle_matlab(1); scale_mle = ...

theta_mle_matlab(2); df_mle = theta_mle_matlab(3);
46

47 % Calculation of MLE for parametric bootstrap with ...
function from the book, output: df loc scale

48 theta_mle_book = tlikmax0(data, initvec);
49 loc_mle = theta_mle_book(2); scale_mle = ...

theta_mle_book(3); df_mle = theta_mle_book(1);
50

51 % bootstrap
52 for b1=1:B1
53 %ind = unidrnd(T,[T,1]); bootsamp=data(ind); % nonpara boot
54 bootsamp = loc_mle+scale_mle*trnd(df_mle,T,1); % para boot
55 VaR = quantile(bootsamp, alpha_VaR);
56 temp = bootsamp(bootsamp≤VaR); ESvec(b1)=mean(temp);
57 end
58 ci = quantile(ESvec,[alpha_CI/2 1−alpha_CI/2]);
59 bool_acc(i) = (trueES>ci(1)) & (trueES<ci(2)); % check ...

wheter the true value is in the CI
60 length_ci(i) = ci(2)−ci(1); % calculate the length of the CI
61

62 end
63 length90 = mean(length_ci); % calculate mean length of CI
64 actual90 = mean(bool_acc); % calculate actual coverage ...

probability
65

66 acc(end+1) = actual90;
67 CI(end+1) = length90;
68

69 end
70 disp('===================================================')
71 fprintf('T: %d', T)
72 acc
73 CI
74

75 end
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1.3.2 Output

Since the output in question 1 deviated from our expectations, we tried a new route
and used much higher sample sizes (T = [1′000, 10′000, 100′000]). We further sus-
pected the performance to be a function of α, the tail probability for the ES. Thus,
we extended the results from question 1 to the use of 1%, 5% and 10% and stuck
with 300 repetitions for two reasons. Firstly, to stay consistent with the previous
results, so they are comparable and secondly, considering the computation time,
we decided for higher sample sizes at the cost of lower repetitions. Without these
ameliorations, we ended up with an actual coverage that was much higher than the
expected nominal coverage of 90% and, similarly, the CI were too long. Incorporat-
ing the above changes leads to the reported values in table 3. We can see that the CI
length decreases with increasing sample size, and the values for T = 100′000 start
to look sensible. We do expect the non-parametric to perform worse, so it comes as
no surprise that the bigger the sample sizes the closer the values of the CI length
for the parametric and non-parametric case. We supposed at the beginning that
the bootstrap’s performance depends on the tail probability, which can readily be
seen by the horizontally declining CI length values. As a premature conclusion, we
could say that the including significantly higher sample sizes does have the desired
effect. Also, the relationship with the tail probability seems to exist, pointing in the
desired direction.
When we turn to the actual coverage, however, the values are all over the place
again. We do observe that for the values for the parametric bootstrap seem to
tend to 90% when increasing the tail probability, which is what we wanted. This
is only an indication and should be explored further by incorporating even higher
tail probabilities; we lacked the computational power to obtain more values in such
short time. On the other hand, we do not see any relationship with the sample size,
which sheds some more light on table 1 and shows that the values there are, thus,
also rather constant than increasing. One could even go as far as saying that the
actual coverage increases, when looking at values of α = 0.1 in table 3.
The performance of the non-parametric shows a clear relationship with the tail prob-
abilities, as expected. However, increasing sample sizes lead to increasing actual
coverage beyond the nominal coverage of 90%. To expand on the above conclu-
sion, the dependence on the tail probabilities does seem to exist, however, much
lower in magnitude at least for the parametric case. The inclusion of much higher
sample sizes, very counter-intuitively, does not lead to better results, which reflects
the issues of question 1. If we had more computational power at our demand, we
would use more repetitions, however, experiments with lower sample sizes and higher
repetitions yielded the same pattern. The natural extension of this is the double
bootstrap, which is designed to correct for this issue, as it enhances the accuracy of
the single bootstrap4. An implementation thereof is given in the next section.

4https://digitalcommons.wayne.edu/cgi/viewcontent.cgi?article=1981context=jmasm
(15.11.2022).
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Table 3: Parametric and Non-Parametric Bootstrap for True ES based on Student
t Distribution for Varying Probability Levels for the ES.

CI Length Actual Coverage

α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1

T = 1′000

Parametric 8.9270 5.9291 4.8481 1.0000 0.9933 0.9767
Non-Parametric 16.2329 4.8865 4.3146 0.8800 0.8067 0.7667

T = 10′000

Parametric 2.6301 1.9443 1.6342 1.0000 1.0000 0.9833
Non-Parametric 2.4226 1.9725 1.5721 0.9800 0.9467 0.8867

T = 100′000

Parametric 0.8189 0.6186 0.5183 1.0000 1.0000 0.9967
Non-Parametric 0.8091 0.6084 0.5120 0.9800 0.9633 0.8567

Note: The parametric bootstrap assumes a regular Student t distribution. We use
location 0 and scale 1 for the true model with B=1000 and df=4.

1.4 Using Double Bootstrap

In this section, we repeat the procedure of question 1, however, using a double
instead of a single bootstrap in order to enhance the coverage performance. We
only present the code here, as running a double bootstrap is infeasible. We showed
already in question 1 that fewer bootstrap replications (B) are actually sufficient.
Since the double bootstrap takes much longer due to the double loop, we should
only use B = 250 replications, in order to avoid astronomical computation times.
In contrast to the previous section, where we used very big sample sizes, we should
use the same sample sizes as in the original question (i.e. T = [500, 1000, 2000]), to
be able to compare the influence of the double to the single bootstrap.

1.4.1 Code

The code looks very similar to the one presented in question 1 (1.1), which the
exception of the double bootstrap. The code loops over three parameters: number
of repetitions (rep), sample size (T) and the probability level for the ES (alpha_CI).
The output is nicely formatted into tables and exported as a .csv file for each number
of repetitions. Further, when switching between the parametric and non-parametric,
the respective lines have to be commented out twice, once in the inner and once in
the outer bootstrap. Similarly to question 1, we can still choose the method of MLE.

1 % =====================Exercise 1. ii)==============================
2 % Simulate T−length vectors of IID location scale student t data
3 % and use parametric and non−parametric !!DOUBLE!! bootstrap to ...

check whether
4 % the true ES in the CI. This yields the actual coverage and the
5 % average lengths of the CI.
6 % ==================================================================
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7

8 % Define variables
9 % Values to loop over

10 T_vec = [1e2 1e3 1e4 1e5]; len_T = size(T_vec);
11 alpha_CI_vec = [0.01 0.05 0.1]; len_alpha = size(alpha_CI_vec);
12 rep_vec = [1e2 1e3 1e4 1e5]; len_rep = size(rep_vec);
13

14 truenominal = 0.9; % true nominal coverage
15 nominal=0.799:0.002:0.999; nomlen=length(nominal);
16

17

18 % Loop over all the variables
19 for rep = rep_vec
20 % Create arrays to append the output to. Do it inside the ...

loop over the
21 % reps to get tables for each number of repetitions
22 acc = zeros(len_alpha(2), len_T(2));
23 CI = zeros(len_alpha(2), len_T(2));
24

25 for T = T_vec
26 iter1 = 1;
27

28 for alpha_CI = alpha_CI_vec
29 iter2 = 1;
30

31 % Define Variables
32 rand('twister',6) % set seed value so we can ...

replicate results
33 %rep = 1e3;
34 alpha_VaR = 0.01; %alpha_CI = 0.1; p = 0.9;
35 loc = 1; scale = 2; df = 4; % set parameters for ...

student t distribution
36 initvec = [df loc scale]; % needed for tlikmax0
37 B1 = 10; ESvec1 = zeros(B1,1);
38 B2 = 10; ESvec2 = zeros(B2,1); %set parameters for ...

bootstrap
39 bool_acc = zeros(rep, 1); length_ci = zeros(rep, 1);
40 bool1=zeros(B1, nomlen);
41

42

43 % Compute True ES to check if it is in CI
44 c01 = tinv(alpha_VaR , df); % left tail quantile, ...

for loc−0 scale−1
45 truec = loc+scale*c01; % left tail quantile c
46 ES01 = −tpdf(c01,df)/tcdf(c01,df) * (df+c01^2)/(df−1);
47 trueES = loc+scale*ES01;
48

49

50 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
51

52

53 % Loop over repetitions
54 for i=1:rep
55

56 % Create random variates of student t distribution ...
and calculate empirical

57 % ES for comparison with true ES with bootstrap
58 data = loc+scale*trnd(df,T,1); % random variate ...
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for student t distribution
59

60 % Calculation of MLE for parametric bootstrap with ...
matlab function, output: loc scale df

61 %theta_mle_matlab = ...
mle(data,'Distribution','tLocationScale');

62 %loc_mle = theta_mle_matlab(1); scale_mle = ...
theta_mle_matlab(2); df_mle = theta_mle_matlab(3);

63

64 % Calculation of MLE for parametric bootstrap with ...
function from the book, output: df loc scale

65 theta_mle_book = tlikmax0(data, initvec);
66 loc_mle = theta_mle_book(2); scale_mle = ...

theta_mle_book(3); df_mle = theta_mle_book(1);
67

68 % bootstrap
69 for b1=1:B1 %%%%%%%% outer bootstrap
70 %ind = unidrnd(T,[T,1]); bootsamp1=data(ind); % ...

nonpara boot
71 bootsamp1 = loc_mle+scale_mle*trnd(df_mle,T,1); ...

% para boot
72 VaR = quantile(bootsamp1, alpha_VaR);
73 temp1 = bootsamp1(bootsamp1≤VaR); ...

ESvec1(b1)=mean(temp1);
74

75 for b2=1:B2 %%%%%%%% inner bootstrap
76 %ind = unidrnd(T,[T,1]); ...

bootsamp2=bootsamp1(ind); % nonpara boot
77 bootsamp2 = ...

loc_mle+scale_mle*trnd(df_mle,T,1); % ...
para boot

78 VaR = quantile(bootsamp2, alpha_VaR);
79 temp2 = bootsamp2(bootsamp2≤VaR); ...

ESvec2(b2)=mean(temp2);
80 end %%%%%% end inner bootstrap
81 for j = 1:nomlen
82 alpha_inner=1−nominal(j) ; ci=quantile ...

(ESvec2 , [alpha_inner/2 ...
1−alpha_inner/2]) ;

83 bool1(b1,j) = (trueES>ci(1)) & (trueES<ci(2));
84 end
85

86 end %%%%%%% end outer bootstrap
87

88 bootactual = mean(bool1) + cumsum((1:nomlen) / ...
1e10 );

89 boot90=interp1(bootactual, nominal, truenominal);
90 alphanom=1−boot90; ci1 = quantile(ESvec1 ...

,[alphanom/2 1−alphanom/2]);
91 bool_acc(i) = (trueES>ci1(1)) & (trueES<ci1(2)); ...

% check wheter the true value is in the CI
92 length_ci(i) = ci1(2)−ci1(1); % calculate the ...

length of the CI
93

94 end
95 length90 = mean(length_ci); % calculate mean length ...

of CI
96 actual90 = mean(bool_acc); % calculate actual ...
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coverage probability
97

98 % Append output to tables
99 acc(iter2, iter1) = length90;

100 CI(iter2, iter1) = actual90;
101

102 iter2 = iter2 + 1;
103 end
104

105 iter1 = iter1 + 1;
106 end
107 % Print the number of repetitions and the output tables
108 fprintf('Table for %f repetitions. \nColumns are sample ...

sizes, rows are probability levels for ES.\n', rep)
109

110 % Create tables from output and display them
111 tab_acc = array2table(acc, 'VariableNames', string(T_vec), ...

'RowNames', string(alpha_CI_vec))
112 tab_CI = array2table(CI, 'VariableNames', string(T_vec), ...

'RowNames', string(alpha_CI_vec))
113

114 % Write output to csv file for each number of repetitions
115 current_file_acc = sprintf('acc__reps_%d.csv', rep);
116 current_file_CI = sprintf('CI__reps_%d.csv', rep);
117 writetable(tab_acc, current_file_acc, 'WriteVariableNames', ...

true, 'WriteRowNames', true, 'Delimiter', ',');
118 writetable(tab_CI, current_file_CI, 'WriteVariableNames', ...

true, 'WriteRowNames', true, 'Delimiter', ',');
119

120 disp('========================================================')
121 end
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2 Parametric and Non-Parametric Bootstrap of ES
based on Noncentral t Distribution (Student t As-
sumption in Param. Bootstrap)

In question 2 we first compare the outputs of the density approximations given in
the book to the one built-into Matlab. We find that they are identical. Then, we
compare the calculation of the ES via the integral definition of the Noncentral t
Distribution (NCT) and via simulation. We further report the average length of
the CIs, and the actual coverage using parametric and non-parametric bootstrap.
The twist here, compared to question 1, is that the parametric bootstrap does not
assume the correct model. It assumes a central Student t distribution, whereas the
underlying data is simulated from a NCT distribution.

In the following questions, we will use the singly NCT distribution, where µ repre-
sents the noncentrality parameter and df the degrees of freedom. The central case of
µ = 0 results in the regular or central Student t distribution, whilst negative values
of µ lead to heavier left tails of the distribution (and heavier right tails in the case
of a positive µ). The former case is more relevant in the context of real financial
stock returns, so we will focus on negative values of µ.

2.1 Comparison PDF from Book and Matlab

For calculating the ES via the integral definition of the NCT distribution, we need to
compare the density function from the book Fundamental Statistical Inference5 and
the Matlab built-in density function. In figure 1 we see that they both give the same
values. The density approximation from the book can be found in the Appendix
(5.2). It calculates the log of the density, which is why we apply the exponential
function to make it comparable to the built-in Matlab function.

5Paolella, M. S. (2018). Fundamental Statistical Inference: A Computational Approach (Vol.
216). John Wiley Sons.
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2.1.1 Code and Output

1 % ========================Exercise 2.i)============================
2 % Comparison of the book matlab code and the matlab built−in ...

function
3 %==================================================================
4

5 % Define Variables and x−axis
6 df = 4; mu = −3;
7 x = linspace(−30,30,10000);
8

9 % Approximate densities
10 f = exp(stdnctpdfln_j(x, df, mu)); % book −> exp to reverse the log
11 f2 = nctpdf(x,df, mu); % Matlab
12

13 % Graph the two densities on the same figure
14 figure
15 plot(x, f, 'LineWidth', 4)
16 hold on
17 plot(x, f2, 'Linewidth', 1.5)
18 xlabel('x')
19 ylabel('Density')
20 l=legend('Book function','Matlab bilt−in ...

function','Location','northeast')
21 set(l,'FontSize',5.5);

Figure 1: Comparison of PDF using the Book and Matlab Function.
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2.2 Expected Shortfall via Simulation and with Numeric In-
tegration

We compute the true ES of a NCT distribution in two ways. Firstly via simulation
and secondly by using the integral definition of the NCT, which means we first solve
for the Value-at-Risk (VaR) quantile6 and then do numeric integration of the NCT
density multiplied by x. In figure 2 we can see that the ES with numeric integration
appears to be around the mean of all ES via simulation, which is what we were
hoping for.

2.2.1 Code and Output

1 % ========================Exercise 2.ii)===========================
2 % Comparison of the expected shortfall via simulation and with ...

numeric integration
3 % =================================================================
4

5 % Define Variables
6 rep = 300; T = 500;
7 p = 0.9; alpha_CI = 0.1; alpha_VaR = 0.01;
8 loc = 0; scale = 1; df = 3; % set parameters for student t ...

distribution
9 mu = −3; % mu is noncentrality parameter

10

11 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
12

13 % ES with numeric integration:
14 c01 = nctinv(alpha_VaR,df,mu); % left tail quantile
15 I01 = @(x) x.*exp(stdnctpdfln_j(x,df,mu)); %book pdf function
16 ES_01_numint = integral(I01 , −Inf , c01) / alpha_VaR; %upper ...

bound is the alpha−quantile
17 cLS = loc+scale*c01; % cLS is cutoff Location Scale
18 ILS = @(y) (y).*exp(stdnctpdfln_j((y−loc)/scale, df,mu))/scale;
19 ES_wLS_numint = integral(ILS , −Inf , cLS) / alpha_VaR
20

21 % ES via simulation
22 ESvec=zeros(rep,1);
23 for i=1:rep
24 data=loc+scale*nctrand(df,mu,T); VaR=quantile (data, alpha_VaR);
25 temp=data(data≤VaR); ESvec(i)=mean(temp);
26 end
27 ES_via_simulation=mean(ESvec)
28

29 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
30

31 % Graph of ES via simulation and ES with numeric integration :
32 figure
33 histogram(ESvec), ax=axis;
34 set(gca,'fontsize',12)
35 line ([ ES_wLS_numint ES_wLS_numint] ,[0 ax(4)], 'color', 'g ', ...

'linewidth',3)
36 xlabel('ES value','FontSize',12)

6Also simply referred to as the α quantile. But in order to avoid confusion with the tail index
α of a stable Paretian distribution used in question 3, we use VaR-quantile.
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37 ylabel('Frequency','FontSize',12)
38 l=legend('ES via simulation','ES with numeric ...

integration','Location','northwest')
39 set(l,'FontSize',5);

Figure 2: Comparison of the ES via Simulation and with Numeric Integration.
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2.3 Main Part

2.3.1 Code

The function for the MLE of a regular Student t distribution (5.3), the function for
the simulation on NCT random variates (5.1) and lastly the function provided in
the book for the calculation of the log of the pdf for a NCT distribution (5.2) can be
found in the Appendix. Again, the code is set up so that it iterates over all possible
values of the sample size (T), the degrees of freedom (df) and the noncentrality
parameter (µ). To switch between the parametric and non-parametric bootstrap,
comment out the respective lines (64 or 66). As discussed in question 1 (1.1), we
use the simple function provided in the book for the calculation of the MLE for
the regular Student t distribution in the parametric bootstrap. For completeness,
the more sophisticated MLE function for the regular Student t is provided in the
Appendix (5.5).

1 % =========================Exercise 2==============================
2 % Simulate T−length vectors of IID noncentral t random variates for
3 % calculation of true ES and check the CI based on parametric
4 % (using regular Student t distribution) and non−parametric ...

bootstrap.
5 %==================================================================
6

7 % We have 3 for loops. We use different values for the sample ...
size T, df,

8 % and the noncentrality parameter mu.
9
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10 for mu = [−3 −2 −1 0]
11 for df = [3 6]
12 acc = []; % The output for each T will be appended to
13 % these vectors
14 CI = [];
15 for T = [100 500 2000]
16

17 % Define Variables
18 rand('twister',6) % set seed value so we can
19 %replicate results
20 rep=200;
21 p = 0.9; alpha_CI = 0.1; alpha_VaR = 0.01;
22 loc = 0; scale = 1; % df = 3 set parameters for ...

student t
23 % distribution
24 % mu = −3; % mu is noncentrality parameter
25 initvec = [df loc scale]; % needed for tlikmax0
26 B1 = 1e3; ESvec = zeros(B1,1); %set parameters for
27 % bootstrap
28 bool_acc = zeros(rep,1); length_ci = zeros(rep,1);
29 % vector for coverage accuracy and CI length
30

31 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
32

33

34 %ES with numeric integration:
35 c01 = nctinv(alpha_VaR,df,mu); % left tail quantile
36 %I01 = @(x) x.*nctpdf(x,df,mu); %matlab pdf function
37 I01 = @(x) x.*exp(stdnctpdfln_j(x,df,mu)); %book pdf ...

function
38 ES_01_numint = integral(I01 , −Inf , c01) / ...

alpha_VaR; %upper bound is the alpha−quantile
39

40

41 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
42

43

44 % Loop over repetitions
45 for i=1:rep
46

47 ESvec = zeros(B1,1);
48 %i % to see at which iteration you are
49

50 % Create random variates of student t distribution
51 % and calculate empirical
52 % ES for comparison with true ES with bootstrap
53 data = loc + scale*nctrand(df, mu, T); % random
54 % variate for student t distribution
55

56 % Calculation of MLE for parametric bootstrap with
57 %function from the book, output: df loc scale
58 theta_mle_book = tlikmax0(data, initvec);
59 loc_mle = theta_mle_book(2); scale_mle = ...

theta_mle_book(3); df_mle = theta_mle_book(1);
60

61 % bootstrap
62 for b1=1:B1
63 %ind = unidrnd(T,[T,1]); bootsamp=data(ind);
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64 % nonpara boot
65 bootsamp = loc_mle+scale_mle*trnd(df_mle,T,1);
66 % para boot
67 VaR = quantile(bootsamp, alpha_VaR);
68 temp = bootsamp(bootsamp≤VaR); ...

ESvec(b1)=mean(temp);
69 end
70 ci = quantile(ESvec,[alpha_CI/2 1−alpha_CI/2]);
71 bool_acc(i) = (ES_01_numint>ci(1)) & ...

(ES_01_numint<ci(2));
72 % check whether the true value is in the CI
73 length_ci(i) = ci(2)−ci(1);
74 % calculate the length of the CI
75 end
76 length90 = mean(length_ci); % calculate mean length
77 % of CI
78 actual90 = mean(bool_acc); % calculate actual
79 %coverage probability
80

81 % Append the results to the result vectors
82 acc(end+1) = actual90;
83 CI(end+1) = length90;
84 end
85 disp('===================================================')
86

87 % The according parameters are printed out before every
88 % output,
89 % so it is easier to copy them to the Latex file.
90 fprintf('mu: %d, df: %d\n', mu, df)
91 acc
92 CI
93 end
94 disp('=======================================================')
95 end
96 disp('===========================================================')

2.3.2 Output

Tables 4-7 represent our results for the parametric and non-parametric bootstrap of
the true ES based on a NCT distribution with different values for µ ranging from -3
to 0. The crucial part of this question is that we assume a regular Student t distri-
bution in the parametric bootstrap, which is incorrect. Followingly, we expect the
parametric to perform much worse than the non-parametric, which only resamples
from the original dataset, i.e. the NCT random variates. We use 300 repetitions in
our calculations.

The actual coverage increase whilst the average CI length decrease for the non-
parametric bootstrap with increasing sample size T, which is exactly what we expect.
Namely, the more samples we have, the more concise is the sampling distribution of
the ES. Thus, we should be able to have higher actual coverage of the true ES for
an ever smaller CI.
The non-parametric values do not vary with a change in the noncentrality param-
eter µ. This makes sense, as the non-parametric simply resamples from the NCT
random variates that change according to the value of µ and does not falsely assume
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a central distribution. Using similar logic, we do not expect the performance of the
non-parametric to be influenced by a change in the number of df in the underlying
NCT distribution.

On the other hand, if we look at the values for the parametric bootstrap, we see, as
expected, a much poorer performance. This is due to the false assumption that the
underlying model is a regular Student t distribution, which it is not. This would im-
ply that the bigger the noncentrality parameter (µ) in absolute value, the worse the
assumption of a regular Student t. Or the other way around, if we have µ = 0, the
parametric should outperform the non-parametric, because it assumes the correct
model, namely a central Student t distribution. This is exactly what we see in table
7. The actual coverage for the parametric explodes and lies much above the one for
the non-parametric. Similarly, an increase in sample size leads to even higher actual
coverage and decreasing CI length. Our initial expectations are verified.

Now, we turn to the performance of the parametric bootstrap in the case where
µ is smaller than 0, i.e. there is some noncentrality. Under these conditions, we
would expect the model to perform worse with increasing sample size. This is be-
cause the sample size would decrease the CI length for a central Student t, i.e. make
it more narrow around the parameter under the false centrality-assumption, which is
not the true parameter under the NCT distribution. Followingly, the true parameter
lies outside the bounds of the CI more often. Obviously, we still expect a smaller CI
length with increasing sample size. We report values for the parametric bootstrap
with µ < 0 in tables 4-6, which support our arguments.
We also see that the CI lengths are much shorter for higher df. This is because
higher df result in lighter tails, which means that the empirical ES is calculated
using a shorter range on the x-axis, i.e. the values from negative infinity to the
VaR-quantile. Therefore, the values for the empirical ES in the bootstrap lie closer
to each other and their CI is shorter by construction.

The asymmetry of the NCT distribution will become smaller the larger the df.
Therefore, we expect the parametric model, which assumes centrality, to perform
better with higher df. Similarly, the parametric bootstrap should perform better
the closer µ gets to 0, i.e. the less asymmetry there is in the true distribution. How-
ever, we do not observe the last two claims in the data. Even after days worth of
reviewing the code, checking with classmates and running countless variations of the
code, we could not get rid of these inconsistencies. Given that the exact same code
works fine in the other question, we arrived at three possible explanations for this.
Firstly, "the usual skewness is not generally a good measure of asymmetry for this
distribution, because if the degrees of freedom is not larger than 3, the third moment
does not exist at all. Even if the degrees of freedom is greater than 3, the sample
estimate of the skewness is still very unstable unless the sample size is very large."7

This leads us to the conclusion that even though we expected the noncentrality pa-
rameter µ to shift the underlying NCT distribution to the left, resulting in heavier
left tails, the estimate of the skewness used in the MLE for the regular t distribu-
tion in the parametric bootstrap might suffer. We tried to verify this explanation by
running the same calculations for higher df and larger sample sizes, without finding

7https://en.wikipedia.org/wiki/Noncentral_t-distribution (10.11.2022).

18



Question 2

a different pattern in the outcomes. Therefore, we do not report all the tables again.
Secondly, maybe this problem fades away if we used more repetitions in the calcu-
lations. We checked this as well, running all calculations with more repetitions up
to 100’000, again without much luck. We did not, however, check through all spec-
ifications with more repetitions, because our computers would have been occupied
for far too long, rendering all other work cumbersomely slow. Thirdly, as discussed
in question 1 (1.1), we initially did not use the more sophisticated MLE function
from the book, which might lead to weaker parameter estimates. This, however,
should have caused problems in the other questions as well, which it did not. For
the sake of completeness, we did run the whole specifications using the improved
version, without much luck either. Since the inconsistencies remained, we refrained
from reporting all tables again.
In conclusion, our code yields the expected results in all other question and also in
this one, except for the dependence of the actual coverage the µ and the df. We have
gone to great lengths to try to find a solution to this, but we did not succeed. To
quote Arthur Conan Doyle’s Sherlock Holmes: "When you have eliminated all which
is impossible, then whatever remains, however improbable, must be the truth.” So,
maybe there just is no such dependence, or it shows only under even bigger sample
sizes and repetitions.

Table 4: Parametric and Non-Parametric Bootstrap for True ES based on a Non-
central Student t Distribution with for µ = −3.

CI Length Actual Coverage

T = 500 T = 1000 T = 2000 T = 500 T = 1000 T = 2000

df = 3

Parametric 21.6540 16.6287 12.2271 0.8000 0.8400 0.7100
Non-Parametric 15.2096 12.5672 10.9797 0.6633 0.7600 0.8267

df = 6

Parametric 4.0480 2.8728 2.1209 0.5767 0.3433 0.0900
Non-Parametric 3.5955 2.9667 2.2447 0.6833 0.8167 0.8267

Note: The parametric bootstrap assumes a regular Student t distribution. We use
location 0 and scale 1 for the true model with B=1000.
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Table 5: Parametric and Non-Parametric Bootstrap for True ES based on a Non-
central Student t Distribution with for µ = −2.

CI Length Actual Coverage

T = 500 T = 1000 T = 2000 T = 500 T = 1000 T = 2000

df = 3

Parametric 14.0067 10.3630 7.6569 0.7667 0.7133 0.5100
Non-Parametric 12.1644 9.4797 7.4663 0.6633 0.7133 0.8033

df = 6

Parametric 2.9615 2.1443 1.5592 0.5667 0.3467 0.0933
Non-Parametric 3.1014 2.3581 1.7901 0.7233 0.7967 0.8400

Note: The parametric bootstrap assumes a regular Student t distribution. We use
location 0 and scale 1 for the true model with B=1000.

Table 6: Parametric and Non-Parametric Bootstrap for True ES based on a Non-
central Student t Distribution with for µ = −1.

CI Length Actual Coverage

T = 500 T = 1000 T = 2000 T = 500 T = 1000 T = 2000

df = 3

Parametric 8.0673 5.9555 4.4706 0.6933 0.6167 0.4200
Non-Parametric 7.5219 5.9842 5.0152 0.6633 0.7067 0.8067

df = 6

Parametric 2.2438 1.6656 1.1667 0.6633 0.5967 0.2767
Non-Parametric 2.1405 1.6900 1.2977 0.6767 0.7900 0.8567

Note: The parametric bootstrap assumes a regular Student t distribution.We use
location 0 and scale 1 for the true model with B=1000.

Table 7: Parametric and Non-Parametric Bootstrap for True ES based on a Non-
central Student t Distribution with for µ = 0.

CI Length Actual Coverage

T = 500 T = 1000 T = 2000 T = 500 T = 1000 T = 2000

df = 3

Parametric 6.0242 4.5187 3.2884 0.9633 0.9933 0.9900
Non-Parametric 4.8600 3.5308 2.8819 0.6667 0.7133 0.7933

df = 6

Parametric 1.9296 1.3804 1.0012 0.9433 0.9667 0.9833
Non-Parametric 1.5595 1.2474 0.9115 0.6933 0.8100 0.8367

Note: The parametric bootstrap assumes a regular Student t distribution.We use
location 0 and scale 1 for the true model with B=1000.
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3 Parametric and Non-Parametric Bootstrap of ES
based on Stable Paretian Distribution (Student t
Assumption in Param. Bootstrap)

In question 3 we repeat what we did in question 2, but we are now using the
symmetric stable Paretian as the underlying distribution with different tail indices
α, as opposed to different df. We then calculate the true ES using the results from
Stoyanov et al.8. We then construct confidence intervals for the empirical ES, based
on the parametric bootstrap (wrongly assuming the Student t distribution), and the
non-parametric bootstrap to check the actual coverage and the average CI lengths.

3.1 Code

Again, the code is set up so that it iterates over all possible specifications. To
switch from between the parametric and non-parametric bootstrap, comment out
the respective lines (51 or 53). As before, we use the simple function provided in the
book to calculate the MLE for a regular Student t distribution in the parametric
bootstrap, which can be found in the Appendix (5.3). For completeness, the more
sophisticated MLE function for the regular Student t is provided in the Appendix
(5.5).

1 % =========================Exercise 3==============================
2 % Simulate T−length vectors of IID stable paretian random ...

variates for
3 % calculation of true ES and check the CI based on parametric
4 % (using regular Student t distribution) and non−parametric ...

bootstrap.
5 % =================================================================
6

7 % We have 3 for loops. We use different values for the sample
8 % size T, tail index alpha_stable,
9 % and the noncentrality parameter mu.

10

11 for alpha_stable = [1.6 1.8]
12 acc = []; % The output for each T will be appended to
13 % these vectors
14 CI = [];
15 for T = [500 1000 2000]
16

17 % Define Variables
18 rand('twister',6) % set seed value so we can
19 % replicate results
20 rep = 300; %T = 2000;
21 p = 0.9; alpha_CI = 0.1; alpha_VaR = 0.01;
22 %loc = 0; scale = 1; %df = 6; % set parameters for
23 % student t distribution
24 %mu = −3; % mu is noncentrality parameter
25 %alpha_stable = 1.8;

8Stoyanov, S. V., Samorodnitsky, G., Rachev, S., Ortobelli Lozza, S. (2006). Computing the
portfolio conditional value-at-risk in the α-stable case. Probability and Mathematical Statistics,
26(1), 1-22.
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26 skewness_stable = 0; scale_stable = 1; mu_stable = ...
0; % parameters for stable distribution

27 initvec = [df loc scale]; % needed for tlikmax0
28 B1 = 1e3; ESvec = zeros(B1,1); %set parameters for
29 % bootstrap
30 bool_acc = zeros(rep,1); length_ci = zeros(rep,1);
31 % vector for coverage accuracy and CI length
32

33 % Compute True ES to check if it is in CI
34 data_ES = stblrnd(alpha_stable, skewness_stable, ...

scale_stable, mu_stable, T, 1);
35 q=quantile(data_ES, alpha_VaR);
36 trueES = (scale_stable*Stoy(q, alpha_stable, ...

skewness_stable)/alpha_VaR)+mu_stable;
37

38 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
39

40 % Loop over repetitions
41 for i=1:rep
42 % Create random variates of student t distribution
43 % and calculate empirical
44 % ES for comparison with true ES with bootstrap
45 data = stblrnd(alpha_stable, skewness_stable, ...

scale_stable, mu_stable, T, 1); % random ...
variate for student t distribution

46

47 % Calculation of MLE for parametric bootstrap with
48 % function from the book, output: df loc scale
49 theta_mle_book = tlikmax0(data, initvec);
50 loc_mle = theta_mle_book(2); scale_mle = ...

theta_mle_book(3); df_mle = theta_mle_book(1);
51

52 % bootstrap
53 for b1=1:B1
54 ind = unidrnd(T,[T,1]); bootsamp=data(ind);
55 % nonpara boot
56 %bootsamp = loc_mle+scale_mle*trnd(df_mle,T,1);
57 % para boot
58 VaR = quantile(bootsamp, alpha_VaR);
59 temp = bootsamp(bootsamp≤VaR); ...

ESvec(b1)=mean(temp);
60 end
61 ci = quantile(ESvec,[alpha_CI/2 1−alpha_CI/2]);
62 bool_acc(i) = (trueES>ci(1)) & (trueES<ci(2));
63 % check whether the true value is in the CI
64 length_ci(i) = ci(2)−ci(1); % calculate the length ...

of the CI
65

66 end
67 length90 = mean(length_ci); % calculate mean length
68 % of CI
69 actual90 = mean(bool_acc); % calculate actual
70 % coverage probability
71

72 acc(end+1) = actual90;
73 CI(end+1) = length90;
74

75 end
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76 disp('===================================================')
77

78 % The according parameters are printed out before every
79 % output,
80 % so it is easier to copy them to the Latex file.
81 fprintf('alpha_stable: %d\n', alpha_stable)
82 acc
83 CI
84 end
85 disp('===========================================================')

3.2 Output

Table 8 report our results for the parametric and non-parametric bootstrap for a
stable Paretian distribution, while the parametric bootstrap wrongly assumes a reg-
ular Student t distribution. We run all the calculations twice for different values of
the tail index α. We again use 300 repetitions.

We start by looking at the values for the non-parametric bootstrap. We assume that
it outperforms the parametric one, as it simply resamples for the simulated stable
Paretian random variates. As in question 2, we do not expect the non-parametric
values to change much with different model specifications, as it is based on resam-
pling. Table 8 shows that the non-parametric performs okay. The actual coverage
increases with the sample size for the non-parametric case, and the CI lengths for
both bootstraps decrease with increasing sample size.
We expect the parametric model to perform very poorly, which can be seen from
the very bad actual coverage values.

However, we would expect the parametric model’s performance to depend on the
tail index α of the underlying stable Paretian distribution. Similarly to what we
expected in question 2 with the dependence on the noncentrality parameter µ. It is
really hard to see concrete evidence for a difference between the coverage probabil-
ities. This would have posed as an opportunity to shed light on the inconsistency
observed earlier, however, it is not of much help either. We did try other tail indices,
but they also did not help at all in the explanation of the missing dependence.
The CI lengths, however, are considerable smaller for a bigger tail index. This might
be because the tail index describes the rate at which the tails taper off. The closer α
gets from 1.6 (the Cauchy distribution) to 2, the closer the stable distribution gets to
the normal distribution. This means that the estimate for the df of a regular Student
t tends to infinity in the MLE, i.e. the estimated df in the parametric bootstrap are
very high. Since the tails of a distribution with higher df, or the normal distribution
in the limit, have much lighter tails, the empirical ES uses a much shorter range
of values (on the x-axis: that is the x-values from negative infinity to the specified
VaR-quantlile.) for its calculation. Therefore, the values lie closer to each other,
hence, the CI are shorter by construction. Therefore, we have established the same
relationship of the df and the size of the CI lengths that we were observed in question
2 (2.3.2).
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Table 8: Parametric and Non-Parametric Bootstrap for True ES based on a Stable
Paretian Distribution with Different Tail Indices α.

CI Length Actual Coverage

T = 500 T = 1000 T = 2000 T = 500 T = 1000 T = 2000

α = 1.6

Parametric 10.1968 7.7960 5.5838 0.6567 0.2467 0.0367
Non-Parametric 18.5696 18.6679 13.3921 0.5700 0.5800 0.6100

α = 1.8

Parametric 3.8102 2.8005 1.9589 0.8267 0.1867 0.0033
Non-Parametric 7.5772 7.6816 5.4951 0.6767 0.5933 0.5533

Note: The stable distribution has a skewness and location of 0 and a scale of 1 for
simplicity. We still use B=1000.

4 Parametric and Non-Parametric Bootstrap of ES
based on Noncentral t Distribution (Noncentral t
Assumption in Param. Bootstrap)

In question 4 we repeat the procedure of question 1, however, using the NCT instead
of the regular Student t for the data generating process (DGP) and as the model
assumption in the parametric bootstrap. Again, we calculate a 90% bootstrap confi-
dence interval based on B bootstrap replications and report the actual coverage and
also the CI lengths, as a functions of T, for both the parametric and non-parametric
bootstrap. Further, we compare the computation time of the built-in Matlab ap-
proximation for the pdf of the NCT to the "d.d.a" NCT approximation from the
book9 in the MLE of the location-scale NCT’s parameters.

4.1 Code

The function for the calculation of the simple and more sophisticated MLE parame-
ters of a NCT distribution (5.4, resp. 5.6) and the function provided in the statistical
inference book for the density approximation of a NCT distribution (5.2) are listed
in the Appendix. Again, the code is set up so that it iterates over all specifications.
In order to change from parametric to non-parametric bootstrap, comment out the
respective lines (58 or 59). Depending on what density approximation should be
used in the MLE, comment out the respective lines (52 or 53). The simple MLE
function that we used in the previous questions was readily adapted to the NCT
by adding the noncentrality parameter and replacing the pdf for the central Stu-
dent t with the pdf approximations of the NCT distribution. Obviously, the same
can be done for the more sophisticated MLE function provided in the book, paying
attention to its output, which also consists of the standard errors for the estimates.

9Paolella, M. S. (2018). Fundamental Statistical Inference: A Computational Approach (Vol.
216). John Wiley Sons.
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1 % =========================Exercise 4==============================
2 % Simulate T−length vectors of IID noncentral t random variates for
3 % calculation of true ES and check the CI based on parametric
4 % (also nct distribution) and non−parametric bootstrap.
5 %==================================================================
6

7 % Start the timer for the elapsed time for the whole run
8 tic
9

10 % We have 3 for loops. We use different values for the sample
11 % size T, df,
12 % and the noncentrality parameter mu.
13

14 for mu = [−3 −2 −1 0]
15 for df = [3 6]
16 acc = []; % The output for each T will be appended to
17 %these vectors
18 CI = [];
19 for T = [500 1000 2000]
20

21 % Define Variables
22 rand('twister',6) % set seed value so we can
23 % replicate results
24 rep = 300; %T = 250;
25 p = 0.9; alpha_CI = 0.1; alpha_VaR = 0.01;
26 loc = 0; scale = 1; % set parameters for student t
27 % distribution
28 initvec = [df mu loc scale]; % for nctlikmax estimation
29 B1 = 1e3; ESvec = zeros(B1,1); %set parameters for ...

bootstrap
30 bool_acc = zeros(rep,1); length_ci = zeros(rep,1);
31 % vector for coverage accuracy and CI length
32

33 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
34

35 %ES with numeric integration:
36 c01 = nctinv(alpha_VaR,df,mu); % left tail quantile
37 %I01 = @(x) x.*nctpdf(x,df,mu); %matlab pdf function
38 I01 = @(x) x.*exp(stdnctpdfln_j(x,df,mu)); %book pdf ...

function
39 ES_01_numint = integral(I01 , −Inf , c01) / ...

alpha_VaR; %upper bound is the alpha−quantile
40

41 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
42

43 % Loop over repetitions
44 for i=1:rep
45 % Create random variates of student t distribution ...

and calculate empirical
46 % ES for comparison with true ES with bootstrap
47 data = loc + scale*nctrand(df, mu, T); % random
48 % variate for student t distribution
49

50 % Calculation of MLE for parametric bootstrap with
51 % matlab/book pdf
52 %param_mle = nctlikmax_matlab(data, initvec);
53 param_mle = nctlikmax_book(data, initvec);
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54 df_mle = param_mle(1); mu_mle = param_mle(2); ...
loc_mle = param_mle(3); scale_mle = param_mle(4);

55

56 % bootstrap
57 for b1=1:B1
58 ind = unidrnd(T,[T,1]); bootsamp=data(ind); % ...

nonpara boot
59 %bootsamp = loc_mle+scale_mle*nctrand(df_mle, ...

mu_mle, T); % para boot
60 VaR = quantile(bootsamp, alpha_VaR);
61 temp = bootsamp(bootsamp≤VaR); ...

ESvec(b1)=mean(temp);
62 end
63 ci = quantile(ESvec,[alpha_CI/2 1−alpha_CI/2]);
64 bool_acc(i) = (ES_01_numint>ci(1)) & ...

(ES_01_numint<ci(2)); % check whether the true ...
value is in the CI

65 length_ci(i) = ci(2)−ci(1); % calculate the length
66 % of the CI
67

68 end
69 length90 = mean(length_ci); % calculate mean length
70 %of CI
71 actual90 = mean(bool_acc); % calculate actual
72 % coverage probability
73

74 acc(end+1) = actual90;
75 CI(end+1) = length90;
76 end
77 disp('===================================================')
78

79 % The according parameters are printed out before every
80 % output,
81 % so it is easier to copy them to the Latex file.
82 fprintf('mu: %d, df: %d\n', mu, df)
83 acc
84 CI
85 end
86 disp('=======================================================')
87 end
88 disp('===========================================================')
89

90

91 % End the timer
92 toc
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4.2 Output

The code computes the parametric and non-parametric bootstrap for a NCT distri-
bution, correctly assuming the true model is a NCT distribution in the parametric
bootstrap. In order to estimate the parameters for the parametric bootstrap, we cal-
culate the MLE based on the density approximation provided in the book and the
one built into Matlab. We run both versions for one repetition of one specification
and without going into the details of the parameter specification of this comparison
run, we see that the calculation based on the pdf provided in the book is about 1.4
times faster. This result seems to hold roughly constant over different specifications,
so we only use the density approximation from the book for the outputs reported in
tables 9-12. Again, we use 300 repetitions.

Since the parametric bootstrap assumes the correct model this time, we expect the
performance of the parametric to be much higher than that of the non-parametric.
Indeed, tables 9-12 show exactly this. We can also see that for both parametric
and non-parametric, the actual coverage increases and the CI length decreases with
increasing sample size, as was to be expected. As before, we do not expect the
performance of the non-parametric to change with different model specification, as
it is based solely on resampling; the reported values support this.
The performance of the parametric bootstrap also does not change much with dif-
ferent parameter specifications, which makes sense, because it always assumes the
correct model and gets the ’correct’ MLEs for each parameter in the specification.
This is in contrast to question 2, where the parametric performance was expected
to be dependent on the NCT model parameters, which specified how far off the
centrality-assumption of the parametric bootstrap really is compared to the NCT
distribution. Lastly, we see again that higher df lead to shorter CIs, which follows
the same logic as explained in question 2 (2.3.2).

Correction: The same correction as in question 1 is appropriate here. The non-
parametric bootstrap seems to converge to the nominal coverage of 90% as expected,
however, the parametric one exceeds it by far. Using the same logic and approach
as in the extension of question 1, we would check for different probability levels for
the ES and for bigger sample sizes. On top of that, we could also use a double
bootstrap, see 1.4 for the implementation.
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Table 9: Parametric and Non-Parametric Bootstrap for True ES based on a Non-
central Student t Distribution with for µ = −3.

CI Length Actual Coverage

T = 100 T = 500 T = 2000 T = 100 T = 500 T = 2000

df = 3

Parametric 22.0855 16.0968 11.7550 0.9667 0.9900 0.9900
Non-Parametric 14.8778 12.3103 9.8671 0.6400 0.7133 0.8200

df = 6

Parametric 4.8423 3.4287 2.4442 0.9733 0.9767 0.9867
Non-Parametric 3.8775 2.9579 2.3311 0.7100 0.7567 0.8533

Note: The parametric bootstrap also assumes a NCT distribution. We use location
0 and scale 1 for the true model with B=1000.

Table 10: Parametric and Non-Parametric Bootstrap for True ES based on a
Noncentral Student t Distribution with for µ = −2.

CI Length Actual Coverage

T = 100 T = 500 T = 2000 T = 100 T = 500 T = 2000

df = 3

Parametric 15.4827 11.6884 8.5130 0.9500 0.9733 0.9967
Non-Parametric 10.8619 9.3950 7.3677 0.6700 0.7267 0.8000

df = 6

Parametric 3.6364 2.6640 1.9387 0.9300 0.9500 0.9900
Non-Parametric 3.0504 2.3592 1.7219 0.7100 0.7900 0.8133

Note: We use location 0 and scale 1 for the true model with B=1000.
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Table 11: Parametric and Non-Parametric Bootstrap for True ES based on a
Noncentral Student t Distribution with for µ = −1.

CI Length Actual Coverage

T = 100 T = 500 T = 2000 T = 100 T = 500 T = 2000

df = 3

Parametric 10.2858 7.4758 5.6105 0.9500 0.9767 0.9867
Non-Parametric 7.6267 6.3333 4.9702 0.6800 0.7233 0.7767

df = 6

Parametric 2.6903 1.9641 1.3981 0.9267 0.9533 0.9633
Non-Parametric 2.2297 1.7143 1.2949 0.7233 0.7567 0.8400

Note: We use location 0 and scale 1 for the true model with B=1000.

Table 12: Parametric and Non-Parametric Bootstrap for True ES based on a
Noncentral Student t Distribution with for µ = −0.

CI Length Actual Coverage

T = 100 T = 500 T = 2000 T = 100 T = 500 T = 2000

df = 3

Parametric 6.0734 4.4881 3.3044 0.9833 0.9767 0.9900
Non-Parametric 4.3268 3.7999 2.8948 0.6433 0.7567 0.8167

df = 6

Parametric 1.9044 1.3674 0.9749 0.9167 0.9533 0.9467
Non-Parametric 1.5283 1.2064 0.9417 0.6567 0.7967 0.8167

Note: We use location 0 and scale 1 for the true model with B=1000.
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5 Appendix: Functions

5.1 Simulation of Noncentral t Random Variates

1 % Simulates T random variates from a nct distribution with ...
degrees of

2 % freedom (df) and noncentrality parameter mu.
3 % We specifically do not use the name 'nctrnd' because this function
4 % already exists in Matlab.
5 function NCT = nctrand(df, mu, T)
6 N = normrnd(mu,1,T,1);
7 X = chi2rnd(df,T,1);
8 NCT = N./sqrt(X/df);
9 end

5.2 Density Approximation to the Noncentral t Distribution

1 % Calculates the log of the pdf for a NCT distribution
2 function pdfln = stdnctpdfln_j(x, nu, gam)
3 vn2 = (nu + 1) / 2; rho = x .^2;
4 pdfln = gammaln( vn2 ) − 1/2*log( pi *nu) − gammaln( nu / 2 ) − ...

vn2*log1p ( rho / nu) ;
5 if ( all (gam == 0) ) , return , end
6 idx = ( pdfln ≥ −37) ; % 36.841 = log (1 e 16 )
7 if (any( idx ) )
8 gcg = gam.^ 2 ; pdfln = pdfln − 0.5*gcg ; xcg = x .* gam;
9 term = 0.5*log (2) + log (xcg) − 0.5*log (max( realmin , ...

nu+rho ) ) ;
10 term ( term == −inf ) = log ( realmin ) ; term( term == + ...

inf ) = log ( realmax ) ;
11 maxiter = 1e4 ; k = 0;
12 logterms = gammaln ( ( nu+1+k ) / 2 ) − gammaln( k+1) − ...

gammaln( vn2 ) + k*term ;
13 fractions = real (exp( logterms ) ) ; logsumk = log ( ...

fractions ) ;
14 while ( k < maxiter)
15 k = k + 1;
16 logterms = gammaln ( ( nu+1+k ) / 2 ) − gammaln( k+1) − ...

gammaln( vn2 ) + k*term( idx ) ;
17 fractions = real (exp( logterms−logsumk( idx ) ) ) ;
18 logsumk( idx ) = logsumk( idx ) + log1p ( fractions ) ;
19 idx(idx) = (abs(fractions) > 1e−4) ; if ( all ( idx == ...

false ) ) , break , end
20 end
21 pdfln = real ( pdfln+logsumk) ;
22 end
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5.3 MLE for Parameters of Regular Location-Scale Student
t Distribution

1 % Computes MLE by optimising negative log−likelihood (nll) for ...
location−scale t distribution

2 function MLE = tlikmax0(x, initvec)
3 tol =1e−5;
4 opts=optimset ( 'Disp ' , 'none ' , 'LargeScale ' , 'Off ' , ...
5 'TolFun ' ,tol , 'TolX ' ,tol , 'Maxiter ' ,200) ;
6 MLE = fminunc(@(param) tloglik(param ,x), initvec, opts);
7

8 function nll = tloglik(param, x)
9 v=param(1); mu=param(2); c=param(3);

10 if v<0.01, v=rand; end % An ad hoc way of preventing negative values
11 if c<0.01, c=rand; end % which works , but is NOT recommended !
12 K=beta (v/2 ,0.5) * sqrt( v ); z=(x−mu) / c;
13 ll = −log(c) −log (K) −(( v+1) /2) * log (1 + (z.^2) / v ); nll ...

= −sum( ll );
14 % formula can be found in the statistical inference book on ...

page: 430
15 % (last formula on page)

5.4 MLE for Parameters of Location-Scale Noncentral t Dis-
tribution

1 % Computes MLE by optimising negative log−likelihood (nll) for ...
location−scale nct distribution using the pdf provided in ...
the book.

2 function MLE = nctlikmax_book(x, initvec)
3 tol =1e−5;
4 opts=optimset ( 'Disp ' , 'none ' , 'LargeScale ' , 'Off ' , ...
5 'TolFun ' ,tol , 'TolX ' ,tol , 'Maxiter ' ,200) ;
6 MLE = fminunc(@(param) nctloglik(param ,x), initvec, opts);
7

8 function nll = nctloglik(param, x)
9 df=param(1); mu=param(2); loc=param(3); scale=param(4);

10 if df<0.01, df=rand; end % An ad hoc way of preventing negative ...
values

11 if scale<0.01, scale=rand; end % which works , but i s NOT ...
recommended !

12 % this is simply the log applied to the pdf on page 373 in the ...
intermediate

13 % probability book
14 z=(x−loc)/scale;
15 nll = −sum(−log(scale)+ stdnctpdfln_j(z,df,mu));
16

17 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18

19 % Using the function provided by Matlab
20 % Computes MLE by optimising negative log−likelihood (nll) for ...

location−scale nct distribution using the pdf built−into Matlab.
21 function MLE = nctlikmax_matlab(x, initvec)
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22 tol =1e−5;
23 opts=optimset ( 'Disp ' , 'none ' , 'LargeScale ' , 'Off ' , ...
24 'TolFun ' ,tol , 'TolX ' ,tol , 'Maxiter ' ,200) ;
25 MLE = fminunc(@(param) nctloglik(param ,x), initvec, opts);
26

27 function nll = nctloglik(param, x)
28 df=param(1); mu=param(2); loc=param(3); scale=param(4);
29 if df<0.01, df=rand; end % An ad hoc way of preventing negative ...

values
30 if scale<0.01, scale=rand; end % which works , but i s NOT ...

recommended !
31 % this is simply the log applied to the pdf on page 373 in the ...

intermediate
32 % probability book
33 z=(x−loc)/scale;
34 nll = −sum(−log(scale)+log(nctpdf(z,df,mu)));

5.5 Sophisticated MLE for Parameters of Location-Scale Stu-
dent t Distribution

1 % Computes more sophisticated MLE by optimising negative ...
log−likelihood (nll) for location−scale nct distribution ...
using the pdf provided in the book. It restricts the ...
parameters in a smarter way and delivers approximate ...
standard errors of the estimated parameters.

2 function [ param , stderr , iters , loglik , Varcov ] = ...
tlikmax(x, initvec)

3

4 %%%%%%%% df mu c
5 bound.lo= [1 1 0.01];
6 bound.hi= [100 1 100 ];
7 bound.which= [1 0 1 ];
8 % In this case , as bound . which for mu is zero , mu will not be
9 % restricted . As such , the values for .lo and .hi are irrelevant

10

11 maxiter =100; tol =1e−3; % change these as you see fit
12 opts=optimset('Display', 'notify−detailed', 'Maxiter', maxiter, ...
13 'TolFun', tol ,'TolX', tol, 'LargeScale', 'Off') ;
14 [pout,fval,exitflag,theoutput,grad,hess]= ...
15 fminunc(@(param) tloglik(param, x, bound), einschrk(initvec ...

,bound) ,opts) ;
16 V=inv(hess) ; % Don ' t negate : we work with the neg of the loglik
17 [param, V]= einschrk (pout, bound, V) ; % Transform back , ...

apply ∆ method
18 param=param' ; Varcov=V;
19 stderr=sqrt(diag(V)) ; % Approx std err of the params
20 loglik=−fval ; % The value of the loglik at its maximum .
21 iters=theoutput.iterations ; % Number of loglikfunction evals
22

23 function ll = tloglik(param , x , bound )
24 if nargin<3 , bound=0; end
25 if isstruct (bound) , paramvec=einschrk(real(param),bound,999);
26 else paramvec=param ;
27 end
28
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29 v=paramvec( 1 ) ; mu=paramvec(2) ; c=paramvec(3) ;
30 K=beta (v /2, 0.5) * sqrt(v) ; z=(x−mu)/c ;
31 ll= −sum(−log(c)−log (K) − (( v+1) /2) * log (1 + (z.^2) / v ));
32

33 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
34

35 % function 'einschrk' is used to perform the conversion between ...
theta and phi.

36 function [pout, Vout]= einschrk (pin, bound, Vin)
37 lo=bound.lo ; hi=bound.hi ; welche=bound.which;
38 if nargin < 3
39 trans=sqrt((hi−pin)./(pin−lo) ) ; pout=(1−welche).*pin + ...

welche.*trans ;
40 Vout =[];
41 else
42 trans=(hi+lo.*pin.^2) ./ (1+ pin .^2) ; pout=(1−welche).* ...

pin + welche .* trans ;
43 % now adjust the standard errors
44 trans=2*pin .* (lo−hi ) ./ (1+pin .^2) .^2;
45 d=(1−welche) + welche .* trans ; % either unity or ∆ method .
46 J=diag (d) ; Vout = J* Vin * J ;
47 end

5.6 Sophisticated MLE for Parameters of Location-Scale Non-
central t Distribution

1 % Computes more sophisticated MLE by optimising negative ...
log−likelihood (nll) for location−scale nct distribution ...
using the pdf provided in the book. It restricts the ...
parameters in a smarter way and delivers approximate ...
standard errors of the estimated parameters.

2 function [ param , stderr , iters , loglik , Varcov ] = ...
tlikmax(x, initvec)

3

4 %%%%%%%% df mu c
5 bound.lo= [1 1 0.01];
6 bound.hi= [100 1 100 ];
7 bound.which= [1 0 1 ];
8 % In this case , as bound . which for mu is zero , mu will not be
9 % restricted . As such , the values for .lo and .hi are irrelevant

10

11 maxiter =100; tol =1e−3; % change these as you see fit
12 opts=optimset('Display', 'notify−detailed', 'Maxiter', maxiter, ...
13 'TolFun', tol ,'TolX', tol, 'LargeScale', 'Off') ;
14 [pout,fval,exitflag,theoutput,grad,hess]= ...
15 fminunc(@(param) tloglik(param, x, bound), einschrk(initvec ...

,bound) ,opts) ;
16 V=inv(hess) ; % Don ' t negate : we work with the neg of the loglik
17 [param, V]= einschrk (pout, bound, V) ; % Transform back , ...

apply ∆ method
18 param=param' ; Varcov=V;
19 stderr=sqrt(diag(V)) ; % Approx std err of the params
20 loglik=−fval ; % The value of the loglik at its maximum .
21 iters=theoutput.iterations ; % Number of loglikfunction evals
22
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23 function ll = tloglik(param , x , bound )
24 if nargin<3 , bound=0; end
25 if isstruct (bound) , paramvec=einschrk(real(param),bound,999);
26 else paramvec=param ;
27 end
28

29 df=param(1); mu=param(2); loc=param(3); scale=param(4);
30 if df<0.01, df=rand; end % An ad hoc way of preventing negative ...

values
31 if scale<0.01, scale=rand; end % which works , but i s NOT ...

recommended !
32 % this is simply the log applied to the pdf on page 373 in the ...

intermediate
33 % probability book
34 z=(x−loc)/scale;
35 % We are here using the density approximation provided in the book
36 nll = −sum(−log(scale)+ stdnctpdfln_j(z,df,mu));
37

38 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
39

40 % function 'einschrk' is used to perform the conversion between ...
theta and phi.

41 function [pout, Vout]= einschrk (pin, bound, Vin)
42 lo=bound.lo ; hi=bound.hi ; welche=bound.which;
43 if nargin < 3
44 trans=sqrt((hi−pin)./(pin−lo) ) ; pout=(1−welche).*pin + ...

welche.*trans ;
45 Vout =[];
46 else
47 trans=(hi+lo.*pin.^2) ./ (1+ pin .^2) ; pout=(1−welche).* ...

pin + welche .* trans ;
48 % now adjust the standard errors
49 trans=2*pin .* (lo−hi ) ./ (1+pin .^2) .^2;
50 d=(1−welche) + welche .* trans ; % either unity or ∆ method .
51 J=diag (d) ; Vout = J* Vin * J ;
52 end
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