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Density of Stable Paretian Distribution

1 Density of Stable Paretian Distribution

In question 1 we simulate random variates of a symmetric stable Paretian distribu-
tion. We then use a kernel estimate for the density and compare the result to the
theoretical probability density function (pdf). The following is our code1 to cre-
ate random variates for an α-stable distribution and to compare the kernel density
estimate to the theoretical density. The result can be seen in figure 1.

1.1 Code

1 %% ====================Exercise 1===============================

2 % For stable parameter values alpha=1.7, beta=−0.4, scale 2 and

3 % location 0.3, generate a plot of the density that

4 % overlays TWO lines. The first line is a kernel density estimate

5 % based on 1e6 (one million) simulated IID stable variates with

6 % obviously the above mentioned parameters

7 %% =============================================================

8 %Creates random values based for a stable distribution with given

9 % parameters

10 clear

11 rng('default')

12

13 % Definition of parameters

14 alpha = 1.7; beta = −0.4; gamma =2; mu = 0.3;

15 x_lab = −30:.01:30;

16 nmbr_replications = 10^6;

17

18 % Creates stable random variates for given parameters

19 X = stblrnd(alpha, beta, gamma, mu, nmbr_replications, 1);

20

21 % Calculates the kernel density given the the random values from

22 % the above simulation

23 [f,xi] = ksdensity(X, x_lab);

24

25 % Calculates the theoretical density given the parameters

26 stab_theo = stblpdf(x_lab, alpha, beta, gamma, mu,'quick')

27

28

29 % Creates a figure given the two plots for the theoretical and

30 % the kernel density

1Further documentation of the ’stblernd’, ’stblepdf’ and ’stblfit’ can be found
in the documentation for the ’STABLE’ built-in package: https://www-mathworks-
com.translate.goog/matlabcentral/fileexchange/37514-stbl-alpha-stable-distributions-for-
matlab?_x_tr_sl=en_x_tr_tl=de_x_tr_hl=de_x_tr_pto=sc (09.10.2022).
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Density of Stable Paretian Distribution

31 PS = PLOT_STANDARDS();

32 figure(1);

33 fig1_comps.fig = gcf;

34 hold on

35 fig1_comps.p1 = plot(xi,f,'LineWidth',4);

36 fig1_comps.p2 = plot(x_lab, stab_theo,'LineWidth', 2);

37 grid minor % Create semitransparent area plots

38 set(fig1_comps.p1, 'Color', PS.Green3, 'LineWidth', 3);

39 set(fig1_comps.p2, 'Color', PS.Red1, 'LineWidth', 3);

40 %fig1_comps.plotTitle = title('Kernel Density vs Theoretical ...

Density');

41 fig1_comps.plotXLabel = xlabel('x');

42 fig1_comps.plotYLabel = ylabel('f(x)');

43 fig1_comps.plotLegend = legend([fig1_comps.p1, fig1_comps.p2], ...

'$$Kernel Density$$', '$$Theoretical Density$$', ...

44 '$$\frac{x}{\pi}$$', '\Big($$\frac{x}{\pi}\Big)^2$$', ...

45 '$$exp\Big({\frac{x}{\pi}}\Big)$$', '$$log(1+x)$$', ...

46 'Area\Big($$\frac{x}{\pi}\Big)^2$$', 'Interpreter', 'latex');

47 legendX0 = .71; legendY0 = .08; legendWidth = .3; legendHeight = .3;

48 set(fig1_comps.plotLegend, 'Location', PS.DefaultLegendLocation, ...

'Box', 'on');

49 set(fig1_comps.plotLegend, 'FontSize', PS.LegendFontSize, ...

'LineWidth', 0.75, ...

50 'EdgeColor', PS.MyBlack);

51 set(gca, 'FontName', PS.PlotTextFont);

52 set([fig1_comps.plotXLabel, fig1_comps.plotYLabel], 'FontName', ...

PS.PlotTextFont);

53 set(gca, 'FontSize', PS.AxisNumbersFontSize);

54 %set(fig1_comps.plotTitle, 'FontSize', PS.TitleFontSize, ...

'FontWeight' , 'bold');
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1.2 Output

The two densities are plotted for a visual comparison in figure 1 for 106 simulated
random variates. Figure 1 shows the kernel as well as the theoretical density and as
was to be expected, the kernel estimate of the pdf and the theoretical pdf are very
similar, confirming the validity of the kernel estimate.

Figure 1: Kernel Density vs. Theoretical Density.

Note: The figure shows the kernel density and the theoretical pdf with the parameters α=1.7,
β=-0.4, γ=2, µ=0.3. The two densities look very much alike, as was to be expected.

3
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2 Density of the Sum of Stable Paretian Distribu-

tions with Same Tail Indices α

In order to confirm that stable distributions are closed under addition (as long as
the α-parameters are the same), we note that the sum of two random variables is
the product of their characteristic functions (c.f.s). If stable distributions are indeed
closed under addition, the tail index α in the resulting c.f. should be the same
as in the two original stable distributions. This means that the sum of two stable
distributions with the same α-parameter is again a stable distribution with said α.
The other parameters will not remain the same and the formulae for the calculation
are presented below. This is the c.f. for a stable distribution2:

φX(t) = E(eit(X)) = exp(itµ− γα|t|a[1 + iβsgn(t)υα(t)]), t ∈ R

υα(t) =

tan(πα
2
), α ̸= 1

2
π
, α = 1

,

where α is the tail index, β the skewness, µ the location and γ the scale parameter.
If we have two random variables (r.v.) X and Y , then the parameters of the sum
S = X + Y can be computed via the product of the c.f.3:

φX+Y (t) = E(eit(X+Y )) = φX(t)φY (t).

From this, it can be shown that S is distributed with tail index α, scale parameter
γ = (γα

1 + ... + γα
n )

1
α and location parameter µ =

∑n
i=1 µ. The skewness parameter

β is given by:

β =
β1γ

α
1 + ...+ βnγ

α
n

γα
1 + ...+ γα

n

.

Using these results, we can simulate two stable distributions with different param-

eters (except for the α-parameter) and sum up the random variables. Then we
use the kernel estimate for the density and compare it to the theoretical pdf with
parameters calculated according to the formulae above. The result can be seen in
figure 2.

2Derivation of c.f. and the parameters by Nolan can be found here:
http://prac.im.pwr.wroc.pl/ burnecki/chap1.pdf (09.10.2022)

3The formulae are generalized for the sum of n random variables. In our case, n = 2.
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2.1 Code

1 %% =====================Exercise 2===============================

2 % Confirm the convolution of two independent stable random ...

variables with the same alpha* but possibly %different beta, ...

location and scale, is itself again stable. Graph with the ...

purported *theoretical* pdf of %S=X1+X2, which is stable ...

with the parameters given as discussed in the textbooks. ...

Take RV X1 to be stable %with alpha=1.7, beta=−0.4, scale=2, ...

and location = −0.5; and independently, X2 is stable with ...

the same %alpha, but with different values of beta, location ...

and scale, that I let you choose. Compute the density %of a ...

stable, but with the appropriate parameters based onthe ...

convolution.

3 %% ===============================================================

4 % Create random values for two stable distribution with different

5 % parameters (exept for alpaha) and the calculate the sum of the

6 % two for the convolution

7 clear

8 rng('default')

9

10 % Definitions of parameters

11 alpha=1.7;

12 beta1=−0.4; gam1=2; mu1=−0.5;

13 beta2=0.4; gam2=1.5; mu2=0.2;

14 x_lab = −30:.01:30;

15 nmbr_replications = 10^6;

16

17 % Create stable random variates for two different parameter vectors

18 X_1 = stblrnd(alpha, beta_1, gam_1, mu_1, nmbr_replications, 1);

19 X_2 = stblrnd(alpha, beta_2, gam_2, mu_2, nmbr_replications, 1);

20 S = X_1+X_2;

21

22 % Calculate the kernel density for the convolution

23 [f,x_lab] = ksdensity(S, x_lab);

24

25 % Parameters of the sum

26 a = 1.7; b = (beta_1*(gam_1^alpha)+beta_2*(gam_2^alpha))/ ...

(gam_1^alpha+gam_2^alpha); gam = ...

(gam_1^alpha+gam_2^alpha)^(1/alpha); mu = (mu_1+mu_2);

27

28 % Calculate the theoretical density given the calculated summed

29 % parameters

30 stab_theo_sum = stblpdf(x_lab, a, b, gam, mu, 'quick');

31

5



Density of the Sum of Stable Paretian Distributions with Same Tail Indices α

32 % Creates a figure given the two plots for the theoretical and

33 % the kernel density

34 PS = PLOT_STANDARDS();

35 figure(2);

36 fig2_comps.fig = gcf;

37 hold on

38 fig2_comps.p1 = plot(x_lab,f,'LineWidth',2)

39 fig2_comps.p2 = plot(x_lab, stab_theo_sum,'LineWidth',2);

40 grid minor % Create semitransparent area plots

41 set(fig2_comps.p1, 'Color', PS.Green3, 'LineWidth', 3);

42 set(fig2_comps.p2, 'Color', PS.Red1, 'LineWidth', 3);

43 %fig2_comps.plotTitle = title('Kernel Density vs Theoretical ...

Density');

44 fig2_comps.plotXLabel = xlabel('x');

45 fig2_comps.plotYLabel = ylabel('f(x)');

46 fig2_comps.plotLegend = legend([fig2_comps.p1, fig2_comps.p2], ...

'$$KernelDensity$$', '$$Density of S = X_1+X_2$$', ...

47 '$$\frac{x}{\pi}$$', '\Big($$\frac{x}{\pi}\Big)^2$$', ...

48 '$$exp\Big({\frac{x}{\pi}}\Big)$$', '$$log(1+x)$$', ...

49 'Area\Big($$\frac{x}{\pi}\Big)^2$$', 'Interpreter', 'latex');

50 legendX0 = .71; legendY0 = .08; legendWidth = .3; legendHeight = .3;

51 set(fig2_comps.plotLegend, 'Location', PS.DefaultLegendLocation, ...

'Box', 'on');

52 set(fig2_comps.plotLegend, 'FontSize', PS.LegendFontSize, ...

'LineWidth', 0.75, ...

53 'EdgeColor', PS.MyBlack);

54 set(gca, 'FontName', PS.PlotTextFont);

55 set([fig2_comps.plotXLabel, fig2_comps.plotYLabel], 'FontName', ...

PS.PlotTextFont);

56 set(gca, 'FontSize', PS.AxisNumbersFontSize);

57 %set(fig2_comps.plotTitle, 'FontSize', PS.TitleFontSize, ...

'FontWeight' , 'bold');
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2.2 Output

Figure 2 shows the kernel estimate for the density and the theoretical pdf for 106

simulations. The lines, again, look very similar, confirming the correctness of the
calculation of the parameters. The values for the parameters of the sum S can be
seen in the note to figure 2.

Figure 2: Kernel Density vs. Theoretical Density.

Note: The figure shows the kernel density and the theoretical density of the sum of two stable
random variables with resulting parameters: α=1.7, β=-0.096, γ=2.65, µ=-0.3. The two densities

look very much alike, as was to be expected.
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3 Density of the Sum of Stable Paretian Distribu-

tions with Different Tail Indices α

In question 3 we convolute two stable random variables with different values of tail
index α in four different ways. First we use the simple integration formula (we will
refer to this as convolution formula) to get the pdf of the sum of the two stable
random variables with different values of tail index α:

fs(s) =

∫ ∞

−∞
fX,Y (x, s− x) dx,

where fX,Y is the density of the jointly distributed continuous random variables.
We then compare the resulting pdf with the pdf calculated via the inversion for-
mula, applied to the characteristic function of the sum of X1 and X2. Since the
characteristic function of the linear combination is continuous, the pdf of the two
characteristic functions is calculated by the following formula:

fX(x) =
1

2π

∫ ∞

−∞
e−itxφX+Y (t) dt.

Thirdly, we compare the two pdfs generated by the convolution formula and the in-
version formula with the kernel density, estimated from the sum of 106 simulations
of random variates for two sets of parameters.
In a last step, we use the conv()-function that is built into Matlab. We use the
bin size as a factor (the "magic number"), since the convolution function does not
consider the bin size in the multiplication of the elements in the vectors that are con-
voluted. The results can be seen in figures 3 and 4 for the respective α-parameters.
The code is set up such that all variables can be defined at the beginning. This al-
lows us to easily change parameters or other factors, such as bin size or the number
of replications. The presented code uses α1 = 1.6 and α2 = 1.8. For the second step,
i.e. different α-parameters, we simply change these values to α1 = 1.5 and α2 = 1.9.
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3.1 Code

1 %======================Exercise 3===================================

2 % Convolute the densities of two stable parameters with ...

different values of tail index alpha (alpha1=1.6, ...

alpha2=1.8), beta=0, scale 1 and location 0, in four ...

different ways. First based on simulation, second with the ...

inversion formula,third with the convolution formula and ...

last with the conv() function. Repeat the above, but for ...

alpha1=1.5, and alpha2=1.9.

3 %

4 %====================================================================

5 % Create random values for two stable distribution with different

6 % parameters (exept for alpaha) and the calculate the sum of the ...

two for

7 % the convolution

8 clear

9 rng('default')

10 bin_size = .2;

11 x_min = −10; x_max = 10;

12 nmbr_replications = 10^6;

13

14 % Define parameters: alpha_1 and alpha_2 need to be changed for ...

second run

15 alpha_1 = 1.6; alpha_2 = 1.8; beta = 0; gam = 1; mu = 0;

16

17 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

18 %a) kernel estimate

19

20 %simulate stable random variates for two different alphas

21 X_1 = stblrnd(alpha_1, beta, gam, mu, nmbr_replications, 1);

22 X_2 = stblrnd(alpha_2, beta, gam, mu, nmbr_replications, 1);

23

24 % Sum the two simulations of stable random variates

25 S = X_1 + X_2;

26

27 % Calculate the kernel density for the convolution

28 x1 = x_min:bin_size:x_max;

29 [y1, x1] = ksdensity(S, x1);

30

31 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

32 %b) inversion formula

33

34 % Create RV S = X_1 + X_2 from two alpha−stable distributions ...

with two

9
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35 % different alpha parameters. We do that by integrating over the ...

product of

36 % the two characteristic function. First we create the c.f.:

37

38 cf_stable_1 = @(t) exp(sqrt(−1)*mu*t − ...

gam*abs(t).^alpha_1.*(1+sqrt(−1)*beta*(t/abs(t))*−(2/pi)* ...

log(abs(t))));

39 cf_stable_2 = @(t) exp(sqrt(−1)*mu*t − ...

gam*abs(t).^alpha_2.*(1+sqrt(−1)*beta*(t/abs(t))*−(2/pi)* ...

log(abs(t))));

40

41

42 % C.f. of the sum of two random variables is the product of the two

43 % c.f.:

44 c = [1 1];

45 cf_stable_Z = @(t) cf_stable_1(c(1)*t) .* cf_stable_2(c(2)*t);

46

47

48 % Calculate inversion formula (integral) of product of c.f.

49 fx = @(x) real(1/(2.*pi) .* integral(@(t)exp(−i.*t.*x).* ...

cf_stable_Z(t),−inf,inf));

50

51 % Loop of the x−values to get pdf

52 x2=x_min:bin_size:x_max;

53 for i=1:size(x2,2)

54 y2(i)=fx(x2(i));

55 end

56

57 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

58 %c) convolution formula

59

60 %% Create two stable random variables

61 fx= @(x) stblpdf(x, alpha_1, beta, gam, mu,'quick');

62 fy= @(y) stblpdf(y, alpha_2, beta, gam, mu,'quick');

63

64 % Calculate convolution via formula (integral)

65 fs = @(s) (integral(@(x) fx(x).*fy(s−x),−inf,inf));

66

67 % Loop over the x−values to get the pdf

68 x3=x_min:bin_size:x_max;

69 for j=1:size(x3,2)

70 y3(j)=fs(x3(j));

71 end

72

73 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

74 %d) conv() function in matlab

75
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76 % Via conv−function, as per extra last mail

77 % create linspace for x−axis in plot

78 x_4 = x_min:bin_size:x_max;

79

80 % Create two stable densities

81 X_1_pdf = stblpdf(x_4, alpha_1, beta, gam, mu, 'quick');

82 X_2_pdf = stblpdf(x_4, alpha_2, beta, gam, mu, 'quick');

83

84 % Convolute the stable random variates and multiply convolution ...

by the

85 % bin size, as conv() does not consider bin size in the ...

multiplication

86 %of the elements in the vector.

87 conv = conv(X_1_pdf, X_2_pdf, 'same')*bin_size;

88

89 % Create x−axis for plot

90 x_lab_conv = linspace(x_min, x_max, length(conv));

91

92 %figure

93 PS = PLOT_STANDARDS();

94 figure(3);

95 fig3_comps.fig = gcf;

96 hold on

97 fig3_comps.p1 = plot(x1, y1, 'LineWidth',2) %kernel

98 fig3_comps.p2 = plot(x2, y2,'LineWidth',2) %inversion

99 fig3_comps.p3 = plot(x3, y3,'LineWidth',2) %convolution

100 fig3_comps.p4 = plot(x_lab_conv, conv,'LineWidth',2) %conv()

101 grid minor % Create semitransparent area plots

102 set(fig3_comps.p1, 'Color', PS.Green3, 'LineWidth', 18);

103 set(fig3_comps.p2, 'Color', PS.Red1, 'LineWidth', 12);

104 set(fig3_comps.p3, 'Color', PS.Blue5, 'LineWidth', 6);

105 set(fig3_comps.p4, 'Color', PS.Yellow1, 'LineWidth', 2);

106 fig3_comps.plotXLabel = xlabel('x');

107 fig3_comps.plotYLabel = ylabel('f(x)');

108 fig3_comps.plotLegend = legend([fig3_comps.p1, fig3_comps.p2, ...

fig3_comps.p3, fig3_comps.p4], '$$Method Kernel Estimate$$', ...

'$$Method: Inversion Formula$$','$$Method: Convolution ...

Formula$$', '$$Method: Convolution Function$$', ...

109 '$$\frac{x}{\pi}$$', '\Big($$\frac{x}{\pi}\Big)^2$$', ...

110 '$$exp\Big({\frac{x}{\pi}}\Big)$$', '$$log(1+x)$$', ...

111 'Area\Big($$\frac{x}{\pi}\Big)^2$$', 'Interpreter', 'latex');

112 legendX0 = .71; legendY0 = .08; legendWidth = .3; legendHeight = .3;

113 set(fig3_comps.plotLegend, 'Location', PS.DefaultLegendLocation, ...

'Box', 'on');

114 set(fig3_comps.plotLegend, 'FontSize', PS.LegendFontSize, ...

'LineWidth', 0.75, ...

115 'EdgeColor', PS.MyBlack);
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116 set(gca, 'FontName', PS.PlotTextFont);

117 %set([fig3_comps.plotXLabel, fig3_comps.plotYLabel], 'FontName', ...

PS.PlotTextFont);

118 set(gca, 'FontSize', PS.AxisNumbersFontSize);

3.2 Output

Figure 3 and 4 plot the lines from the explanations above for two different sets of
parameters for 106 simulation per set of parameters. As can be seen in figure 3, all
four lines are nearly identical, as was to be expected. Also, the two graphs look
very similar. The differences are minimal and are only really visible, if you switch
between the two graphs in Matlab. This is because the parameters β, γ and µ

are the same and the convolution of the two random variables gives very similar
estimates for α, as can be seen in table 2 and 3.4

Figure 3: Kernel Estimate vs. Inversion vs. Convolution Formulae I.

Note: The figure shows the kernel density, the theoretical pdf and the pdf through convolution
(calculated via the integral and Matlab function) with the parameters α1=1.6, α2=1.8, β=0,

γ=1, µ = 0. The four densities look very much alike, as was to be expected.

4Since all four lines in Figure 3 and 4 are very similar, we use four different line widths, to see
them all.
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Figure 4: Kernel Estimate vs. Inversion vs. Convolution Formulae II.

Note: The figure shows the kernel density, the theoretical pdf and the pdf through convolution
(calculated via the integral and Matlab function) with the parameters α1=1.5, α2=1.9, β=0,

γ=1, µ=0. The four densities look very much alike, as was to be expected.

3.3 (Bonus) Sums of Three Random Variables using the conv()

Function

We can compute the theoretical pdf of the sum of three stable r.v.s with the same
tail index α analogously as we did in section 2 (obviously, now n = 3). We could then
compare a stable distribution with the calculated parameters to the pdf calculated
via the conv() function.
To avoid being repetitive, we look at the sum of three Gaussian r.v.s by comparing
their theoretical pdf to the pdf calculated by the conv() function. We simulate
three Gaussian r.v.s and use the conv() function to get the pdf of the sum. This,
we can compare to the theoretical pdf of the sum of three Gaussian r.v.s, as the
parameters of the convolution can readily be calculated via the product of the c.f.
Given the independence of the r.v.s, the parameters are simply the sum of the
original parameters, such that: µsum = µ1 + µ2 + µ3 and equivalently for σsum. As
can be seen in figure 5, the lines are nearly identical, confirming the validity of the
calculations by the conv() function.
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3.3.1 Code

1 %======================Exercise 3 (Bonus)===========================

2 %Convolute the densities of three normal/gaussian random ...

variables with the conv() function. Compare it to the ...

theoretical distribution of the sum of three gaussian random ...

variables.

3 %===================================================================

4 %%create convolution of three normal/gaussian random variables ...

(same bonus

5 %%question, but there is no theoretical distribution for three ...

stbale

6 %%random variables to compare to. for the normal case, we can ...

make a

7 %%convolution and compare it to the theoretical one. Please make ...

graph that

8 %%shows theoretical vs. simulated sum of three rv.)

9 clear

10 rng('default')

11 bin_size = 0.2;

12 x_lab = −10:bin_size:10;

13 length_x_lab = length(x_lab);

14

15 % Create three gaussian random variables using built−in function ...

(where

16 % sigma is the standard deviation)

17 % Creates pdfs for three Gaussian random variables with ...

different paramters

18 mu_1 = 0; mu_2 = 0; mu_3 = 0; sigma_1 = 1; sigma_2 = 1.5; ...

sigma_3 = 1.3;

19 X_1_norm = normpdf(x_lab, mu_1, sigma_1);

20 X_2_norm = normpdf(x_lab, mu_2, sigma_2);

21 X_3_norm = normpdf(x_lab, mu_3, sigma_3);

22

23 % Create sum of all random variates

24 Z = X_1_norm + X_2_norm + X_3_norm;

25

26 % Convolution of three gaussian rv.

27 conv_norm_3 = conv(conv(X_1_norm, X_2_norm, 'same'), X_3_norm, ...

'same')*bin_size^2;

28

29 % for x−values

30 x_lab_conf = linspace(−10,10, length(conv_norm_3));

31

32 %theoretical pdf for convolution of three gaussian rv. if the three
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33 %gaussian random variables are independent, the sum has is also ...

normally

34 %distributed with mu and sigma as the sum of the single parameters.

35

36 % Calculate parameters mu and sigma for convoluted gaussian

37 mu_sum = mu_1 + mu_2 + mu_3;

38 sigma_sum = sqrt(sigma_1^2 + sigma_2^2 + sigma_3^2);

39

40 % Normal density with theoretical parmater values for ...

convolution of three Gaussian random variables

41 X_sum = normpdf(x_lab, mu_sum, sigma_sum);

42

43

44 % Plot theoretical vs. convolution line in the same plot

45 PS = PLOT_STANDARDS();

46 figure(2);

47 fig3_comps.fig = gcf;

48 hold on

49 fig3_comps.p1 = plot(x_lab, X_sum, 'LineWidth',2) %theoretical

50 fig3_comps.p2 = plot(x_lab_conf, conv_norm_3,'LineWidth',2) ...

%convolution

51 grid minor % Create semitransparent area plots

52 set(fig3_comps.p1, 'Color', PS.Green3, 'LineWidth', 5);

53 set(fig3_comps.p2, 'Color', PS.Red2, 'LineWidth', 3);

54 fig3_comps.plotXLabel = xlabel('x');

55 fig3_comps.plotYLabel = ylabel('f(x)');

56 fig3_comps.plotLegend = legend([fig3_comps.p1, fig3_comps.p2], ...

'$$Method: Theoretical Density$$', '$$Method: Convolution ...

Function$$', ...

57 '$$\frac{x}{\pi}$$', '\Big($$\frac{x}{\pi}\Big)^2$$', ...

58 '$$exp\Big({\frac{x}{\pi}}\Big)$$', '$$log(1+x)$$', ...

59 'Area\Big($$\frac{x}{\pi}\Big)^2$$', 'Interpreter', 'latex');

60 legendX0 = .71; legendY0 = .08; legendWidth = .3; legendHeight = .3;

61 set(fig3_comps.plotLegend, 'Location', PS.DefaultLegendLocation, ...

'Box', 'on');

62 set(fig3_comps.plotLegend, 'FontSize', PS.LegendFontSize, ...

'LineWidth', 0.75, ...

63 'EdgeColor', PS.MyBlack);

64 set(gca, 'FontName', PS.PlotTextFont);

65 %set([fig3_comps.plotXLabel, fig3_comps.plotYLabel], 'FontName', ...

PS.PlotTextFont);

66 set(gca, 'FontSize', PS.AxisNumbersFontSize);
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3.3.2 Output

Figure 5: Theoretical vs. Convolution Density of Sum of Three Gaussian Random
Variables.

Note: The figure shows the theoretical pdf and the pdf generated by the convolution of three
Gaussian random variables, with µ1 = 0, µ2 = 0, µ3 = 0, σ1 = 1, σ2 = 1.5, σ3 = 1.3.
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4 Theoretical vs. Empirical Expected Shortfall of a

Stable Paretian Distribution

In question 4 we turn to the expected shortfall. The expected shortfall (ES) is an
example of tail risk measures used in empirical finance and quantitative (financial)
risk management.5 The expected shortfall is defined as follows:

ESθ(R) = E[R|R ≤ qR,θ] =
1

θ

∫ qR,θ

−∞
rfR(r) dr,

where R is a future period financial return and qR, is the θ-quantile such that
P(R ≤ qR,θ) = θ, where θ6 is the tail probability.7

To compute the theoretical ES for the stable parameters (α=1.7, β=0, γ=1, µ=0)
and θ=0.01, we use the results from Stoyanov et al.8, which can be seen in our code.
We then compare the theoretical ES with the empirical ES by simulating 106 stable
variates. As can be seen in the table 1, they are almost the same up to some small
simulation error.

Table 1: Theoretical vs. Empirical ES.

Theoretical ES -11.5516
Empirical ES -11.2422

5(Paolella, M. S. (2018). Fundamental Statistical Inference: A Computational Approach (Vol.
216). John Wiley Sons. Page 437)

6In the assignment xi corresponds to θ
7(Paolella, M.S. (2022). Intermediate Probability: A Computational Approach [lecture notes].

Slide 459)
8(Stoyanov, S. V., Samorodnitsky, G., Rachev, S., Ortobelli Lozza, S. (2006). Computing

the portfolio conditional value-at-risk in the alpha-stable case. Probability and Mathematical
Statistics, 26(1), 1-22)
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4.1 Code

1 %==========================Exercise 4===============================

2 %Compute the theoretical and the empirical ES for given stable ...

parameters.

3 %===================================================================

4 % Define variables

5 alpha=1.7; beta=0; gam=1; mu=0;

6 P=stblrnd(alpha,beta,gam,mu,10^6,1);

7 xi=0.01; %xi is the equivalent to theta in the text −> quantile

8

9 % Theoretical ES

10 q=quantile(P, xi);

11 ES_t=(gam*Stoy(q,alpha,beta)/xi)+mu

12

13 % Empirical ES

14 q=quantile(P, xi); Z=stblrnd(alpha,beta,gam,mu,10^6,1); I=(Z<q);

15 ES_e=mean(Z.*I)/xi

5 Expected Shortfall of Sums of Stable Paretian

Distributions

In question 5 we simulate 106 random variates for two α-stable r.v.s with different
α-parameters. We sum them up in S = X1+X2 and then estimate the parameters of
the resulting distribution. Unfortunately, the link that was provided for the black-
box program did not work for us, so we resorted to the built-in ’stblfit’ function (see
footnote 1) for the parameter estimation. The resulting parameters are:

Table 2: Parameter Estimates for Sum of Stable Random Variable with α1 = 1.6
and α2 = 1.8.

α β γ µ
1.6882 -0.0013 1.5030 2.8656e-04

Table 3: Parameter Estimates for Sum of Stable Random Variable with α1 = 1.5
and α2 = 1.9.

α β γ µ
1.6516 -0.0012 1.5033 3.0386e-04

The parameter estimates in tables 2 and 3 satisfy common sense, as the estimates
for the α-parameters lie between the two α-parameters used in the convolution. Also,
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as we noticed already when looking at the output of section 3.2, the outputs of fig-
ures 3 and 4 look very similar, given the almost identical estimates for α and β.

Using the estimated parameters, we calculate the theoretical ES and compare it
to the empirical ES in tables 4 and 5. In order to relate the theoretical to the empir-
ical value, we apply a simple measure of accuracy: TheoreticalES

EmpiricalES
− 1. Obviously, the

smaller this measure, the closer are the two numbers to each other, and the more
accurate is the empirical ES. Table 4 and 5 confirm the assumption made in the
problem assignment that the accuracy increases with smaller θ. We also note that
the accuracy in table 5 is lower than in table 4, because the α-values used in table
5 and farther apart from each other. We suspect that this results in a less accurate
estimation of the convolution parameters. Followingly, the accuracy is lower.

Table 4: Theoretical vs. Empirical ES for α1 = 1.6 and α2 = 1.8.

θ 0.01 0.025 0.05
Theoretical ES -13.9655 -7.8310 -5.1914
Empirical ES -15.9858 -10.1918 -6.9851

Accuracy -0.1264 -0.2316 -0.2568

Table 5: Theoretical vs. Empirical ES α1 = 1.5 and α2 = 1.9.

θ 0.01 0.025 0.05
Theoretical ES -14.7123 -8.2809 -5.4265
Empirical ES -21.9055 -12.6124 -8.6426

Accuracy -0.3284 -0.3434 -0.3721

5.1 Code

1 %==========================Exercise 5==============================

2 % In exercise 5 we sum two stable random variables and calculate ...

the empirical ES to the theoretical ES calucluated via the ...

parameters obtained from fitting the model with 'stblfit'.

3 %==================================================================

4 % Create random values for two stable distribution with different

5 % parameters (exept for alpaha) and the calculate the sum of the ...

two for the convolution

6 clear

7 rng('default')

8 nmbr_replications = 10^6;

9
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10 % Define parameters: alpha_1 and alpha_2 need to be changed for ...

second run

11 alpha_1=1.6; alpha_2=1.8; beta=0; gam=1; mu=0;

12

13 % Create stable random variates

14 X_1 = stblrnd(alpha_1,beta,gam,mu,nmbr_replications,1);

15 X_2 = stblrnd(alpha_2,beta,gam,mu,nmbr_replications,1);

16 S = X_1 + X_2;

17

18 % Estimate the parameters. The link in the assignment to the ...

black−box function does not exist anymore, so we use ...

'stblfit' to estimate the parameters.

19 p = stblfit(S,'ecf',statset('Display','iter'));

20

21 % Fitted parameters

22 alpha = p(1); beta = p(2); gam = p(3); mu = p(4);

23

24 % Define the three quantiles

25 xi1=0.01; xi2=0.025; xi3=0.05;

26 P=stblrnd(alpha, beta, gam, mu, 10^6, 1);

27

28 q1=quantile(P, xi1); q2=quantile(P, xi2); q3=quantile(P, xi3);

29

30 % Theoretical ES based on the estimates parameters of the ...

convolution

31 ES_t1=(gam*Stoy(q1,alpha,beta)/xi1)+mu

32 ES_t2=(gam*Stoy(q2,alpha,beta)/xi2)+mu

33 ES_t3=(gam*Stoy(q3,alpha,beta)/xi3)+mu

34

35 % For the empirical ES we use the sum of the two stable rv (S).

36 I1=(S<q1); I2=(S<q2); I3=(S<q3);

37

38 ES_e1=mean(S.*I1)/xi1

39 ES_e2=mean(S.*I2)/xi2

40 ES_e3=mean(S.*I3)/xi3

41

42 % Simple measure of accuracy

43 acc_x1 = (ES_t1/ES_e1)−1

44 acc_x2 = (ES_t2/ES_e2)−1

45 acc_x3 = (ES_t3/ES_e3)−1
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